|
|
|
@ -1,6 +1,6 @@
|
|
|
|
|
""" Normalization + Activation Layers
|
|
|
|
|
"""
|
|
|
|
|
from typing import Union, List
|
|
|
|
|
from typing import Union, List, Optional, Any
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
from torch import nn as nn
|
|
|
|
@ -18,8 +18,27 @@ class BatchNormAct2d(nn.BatchNorm2d):
|
|
|
|
|
instead of composing it as a .bn member.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(
|
|
|
|
|
self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True,
|
|
|
|
|
apply_act=True, act_layer=nn.ReLU, inplace=True, drop_layer=None):
|
|
|
|
|
self,
|
|
|
|
|
num_features,
|
|
|
|
|
eps=1e-5,
|
|
|
|
|
momentum=0.1,
|
|
|
|
|
affine=True,
|
|
|
|
|
track_running_stats=True,
|
|
|
|
|
apply_act=True,
|
|
|
|
|
act_layer=nn.ReLU,
|
|
|
|
|
inplace=True,
|
|
|
|
|
drop_layer=None,
|
|
|
|
|
device=None,
|
|
|
|
|
dtype=None
|
|
|
|
|
):
|
|
|
|
|
try:
|
|
|
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
|
|
|
super(BatchNormAct2d, self).__init__(
|
|
|
|
|
num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats,
|
|
|
|
|
**factory_kwargs
|
|
|
|
|
)
|
|
|
|
|
except TypeError:
|
|
|
|
|
# NOTE for backwards compat with old PyTorch w/o factory device/dtype support
|
|
|
|
|
super(BatchNormAct2d, self).__init__(
|
|
|
|
|
num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
|
|
|
|
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity()
|
|
|
|
@ -81,6 +100,62 @@ class BatchNormAct2d(nn.BatchNorm2d):
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SyncBatchNormAct(nn.SyncBatchNorm):
|
|
|
|
|
# Thanks to Selim Seferbekov (https://github.com/rwightman/pytorch-image-models/issues/1254)
|
|
|
|
|
# This is a quick workaround to support SyncBatchNorm for timm BatchNormAct2d layers
|
|
|
|
|
# but ONLY when used in conjunction with the timm conversion function below.
|
|
|
|
|
# Do not create this module directly or use the PyTorch conversion function.
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
x = super().forward(x) # SyncBN doesn't work with torchscript anyways, so this is fine
|
|
|
|
|
if hasattr(self, "drop"):
|
|
|
|
|
x = self.drop(x)
|
|
|
|
|
if hasattr(self, "act"):
|
|
|
|
|
x = self.act(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_sync_batchnorm(module, process_group=None):
|
|
|
|
|
# convert both BatchNorm and BatchNormAct layers to Synchronized variants
|
|
|
|
|
module_output = module
|
|
|
|
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
|
|
|
|
if isinstance(module, BatchNormAct2d):
|
|
|
|
|
# convert timm norm + act layer
|
|
|
|
|
module_output = SyncBatchNormAct(
|
|
|
|
|
module.num_features,
|
|
|
|
|
module.eps,
|
|
|
|
|
module.momentum,
|
|
|
|
|
module.affine,
|
|
|
|
|
module.track_running_stats,
|
|
|
|
|
process_group=process_group,
|
|
|
|
|
)
|
|
|
|
|
# set act and drop attr from the original module
|
|
|
|
|
module_output.act = module.act
|
|
|
|
|
module_output.drop = module.drop
|
|
|
|
|
else:
|
|
|
|
|
# convert standard BatchNorm layers
|
|
|
|
|
module_output = torch.nn.SyncBatchNorm(
|
|
|
|
|
module.num_features,
|
|
|
|
|
module.eps,
|
|
|
|
|
module.momentum,
|
|
|
|
|
module.affine,
|
|
|
|
|
module.track_running_stats,
|
|
|
|
|
process_group,
|
|
|
|
|
)
|
|
|
|
|
if module.affine:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
module_output.weight = module.weight
|
|
|
|
|
module_output.bias = module.bias
|
|
|
|
|
module_output.running_mean = module.running_mean
|
|
|
|
|
module_output.running_var = module.running_var
|
|
|
|
|
module_output.num_batches_tracked = module.num_batches_tracked
|
|
|
|
|
if hasattr(module, "qconfig"):
|
|
|
|
|
module_output.qconfig = module.qconfig
|
|
|
|
|
for name, child in module.named_children():
|
|
|
|
|
module_output.add_module(name, convert_sync_batchnorm(child, process_group))
|
|
|
|
|
del module
|
|
|
|
|
return module_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _num_groups(num_channels, num_groups, group_size):
|
|
|
|
|
if group_size:
|
|
|
|
|
assert num_channels % group_size == 0
|
|
|
|
|