Merge branch 'master' of https://github.com/alexander-soare/pytorch-image-models into alexander-soare-master

pull/660/head
Ross Wightman 4 years ago
commit be0abfbcce

@ -14,7 +14,9 @@ from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained from timm.models.helpers import load_pretrained
from timm.models.layers import Mlp, DropPath, trunc_normal_ from timm.models.layers import Mlp, DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
from timm.models.registry import register_model from timm.models.registry import register_model
from timm.models.vision_transformer import resize_pos_embed
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
@ -118,11 +120,15 @@ class PixelEmbed(nn.Module):
""" """
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4): def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
super().__init__() super().__init__()
num_patches = (img_size // patch_size) ** 2 img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
# grid_size property necessary for resizing positional embedding
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
num_patches = (self.grid_size[0]) * (self.grid_size[1])
self.img_size = img_size self.img_size = img_size
self.num_patches = num_patches self.num_patches = num_patches
self.in_dim = in_dim self.in_dim = in_dim
new_patch_size = math.ceil(patch_size / stride) new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
self.new_patch_size = new_patch_size self.new_patch_size = new_patch_size
self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride) self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
@ -130,11 +136,11 @@ class PixelEmbed(nn.Module):
def forward(self, x, pixel_pos): def forward(self, x, pixel_pos):
B, C, H, W = x.shape B, C, H, W = x.shape
assert H == self.img_size and W == self.img_size, \ assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size}*{self.img_size})." f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x) x = self.proj(x)
x = self.unfold(x) x = self.unfold(x)
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size, self.new_patch_size) x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
x = x + pixel_pos x = x + pixel_pos
x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2) x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2)
return x return x
@ -155,7 +161,7 @@ class TNT(nn.Module):
num_patches = self.pixel_embed.num_patches num_patches = self.pixel_embed.num_patches
self.num_patches = num_patches self.num_patches = num_patches
new_patch_size = self.pixel_embed.new_patch_size new_patch_size = self.pixel_embed.new_patch_size
num_pixel = new_patch_size ** 2 num_pixel = new_patch_size[0] * new_patch_size[1]
self.norm1_proj = norm_layer(num_pixel * in_dim) self.norm1_proj = norm_layer(num_pixel * in_dim)
self.proj = nn.Linear(num_pixel * in_dim, embed_dim) self.proj = nn.Linear(num_pixel * in_dim, embed_dim)
@ -163,7 +169,7 @@ class TNT(nn.Module):
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pixel_pos = nn.Parameter(torch.zeros(1, in_dim, new_patch_size, new_patch_size)) self.pixel_pos = nn.Parameter(torch.zeros(1, in_dim, new_patch_size[0], new_patch_size[1]))
self.pos_drop = nn.Dropout(p=drop_rate) self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
@ -224,6 +230,14 @@ class TNT(nn.Module):
return x return x
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
if state_dict['patch_pos'].shape != model.patch_pos.shape:
state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'],
model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size)
return state_dict
@register_model @register_model
def tnt_s_patch16_224(pretrained=False, **kwargs): def tnt_s_patch16_224(pretrained=False, **kwargs):
model = TNT(patch_size=16, embed_dim=384, in_dim=24, depth=12, num_heads=6, in_num_head=4, model = TNT(patch_size=16, embed_dim=384, in_dim=24, depth=12, num_heads=6, in_num_head=4,
@ -231,7 +245,8 @@ def tnt_s_patch16_224(pretrained=False, **kwargs):
model.default_cfg = default_cfgs['tnt_s_patch16_224'] model.default_cfg = default_cfgs['tnt_s_patch16_224']
if pretrained: if pretrained:
load_pretrained( load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3)) model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3),
filter_fn=checkpoint_filter_fn)
return model return model

@ -352,7 +352,7 @@ def _init_vit_weights(m, n: str = '', head_bias: float = 0., jax_impl: bool = Fa
nn.init.ones_(m.weight) nn.init.ones_(m.weight)
def resize_pos_embed(posemb, posemb_new, num_tokens=1): def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=[]):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from # Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
@ -363,11 +363,12 @@ def resize_pos_embed(posemb, posemb_new, num_tokens=1):
else: else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0] posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid))) gs_old = int(math.sqrt(len(posemb_grid)))
gs_new = int(math.sqrt(ntok_new)) if not len(gs_new): # backwards compatibility
_logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new) gs_new = [int(math.sqrt(ntok_new))]*2
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear') posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bilinear')
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1) posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb return posemb
@ -385,7 +386,8 @@ def checkpoint_filter_fn(state_dict, model):
v = v.reshape(O, -1, H, W) v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape: elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# To resize pos embedding when using model at different size from pretrained weights # To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1)) v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1),
model.patch_embed.grid_size)
out_dict[k] = v out_dict[k] = v
return out_dict return out_dict

Loading…
Cancel
Save