|
|
|
@ -109,7 +109,7 @@ class LayerNorm2d(nn.LayerNorm):
|
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
|
|
|
if _is_contiguous(x):
|
|
|
|
|
return F.layer_norm(
|
|
|
|
|
x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2)
|
|
|
|
|
x.permute(0, 2, 3, 1).contiguous(), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2).contiguous()
|
|
|
|
|
else:
|
|
|
|
|
s, u = torch.var_mean(x, dim=1, unbiased=False, keepdim=True)
|
|
|
|
|
x = (x - u) * torch.rsqrt(s + self.eps)
|
|
|
|
@ -152,10 +152,10 @@ class ConvNeXtBlock(nn.Module):
|
|
|
|
|
x = self.norm(x)
|
|
|
|
|
x = self.mlp(x)
|
|
|
|
|
else:
|
|
|
|
|
x = x.permute(0, 2, 3, 1)
|
|
|
|
|
x = x.permute(0, 2, 3, 1).contiguous()
|
|
|
|
|
x = self.norm(x)
|
|
|
|
|
x = self.mlp(x)
|
|
|
|
|
x = x.permute(0, 3, 1, 2)
|
|
|
|
|
x = x.permute(0, 3, 1, 2).contiguous()
|
|
|
|
|
if self.gamma is not None:
|
|
|
|
|
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
|
|
|
|
x = self.drop_path(x) + shortcut
|
|
|
|
|