|
|
@ -67,6 +67,30 @@ default_cfgs = {
|
|
|
|
'ig_resnext101_32x16d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'),
|
|
|
|
'ig_resnext101_32x16d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'),
|
|
|
|
'ig_resnext101_32x32d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth'),
|
|
|
|
'ig_resnext101_32x32d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth'),
|
|
|
|
'ig_resnext101_32x48d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth'),
|
|
|
|
'ig_resnext101_32x48d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth'),
|
|
|
|
|
|
|
|
'ssl_resnet18': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth'),
|
|
|
|
|
|
|
|
'ssl_resnet50': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth'),
|
|
|
|
|
|
|
|
'ssl_resnext50_32x4d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth'),
|
|
|
|
|
|
|
|
'ssl_resnext101_32x4d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth'),
|
|
|
|
|
|
|
|
'ssl_resnext101_32x8d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth'),
|
|
|
|
|
|
|
|
'ssl_resnext101_32x16d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth'),
|
|
|
|
|
|
|
|
'swsl_resnet18': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth'),
|
|
|
|
|
|
|
|
'swsl_resnet50': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth'),
|
|
|
|
|
|
|
|
'swsl_resnext50_32x4d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth'),
|
|
|
|
|
|
|
|
'swsl_resnext101_32x4d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth'),
|
|
|
|
|
|
|
|
'swsl_resnext101_32x8d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth'),
|
|
|
|
|
|
|
|
'swsl_resnext101_32x16d': _cfg(
|
|
|
|
|
|
|
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth'),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -621,80 +645,218 @@ def tv_resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def ig_resnext101_32x8d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def ig_resnext101_32x8d(pretrained=True, **kwargs):
|
|
|
|
"""Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data
|
|
|
|
"""Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Args:
|
|
|
|
"""
|
|
|
|
pretrained (bool): load pretrained weights
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
|
|
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
|
|
model.default_cfg = default_cfgs['ig_resnext101_32x8d']
|
|
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['ig_resnext101_32x8d']
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=8,
|
|
|
|
|
|
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def ig_resnext101_32x16d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def ig_resnext101_32x16d(pretrained=True, **kwargs):
|
|
|
|
"""Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data
|
|
|
|
"""Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Args:
|
|
|
|
"""
|
|
|
|
pretrained (bool): load pretrained weights
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=16, **kwargs)
|
|
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
|
|
model.default_cfg = default_cfgs['ig_resnext101_32x16d']
|
|
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['ig_resnext101_32x16d']
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=16,
|
|
|
|
|
|
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def ig_resnext101_32x32d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def ig_resnext101_32x32d(pretrained=True, **kwargs):
|
|
|
|
"""Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data
|
|
|
|
"""Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Args:
|
|
|
|
"""
|
|
|
|
pretrained (bool): load pretrained weights
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=32, **kwargs)
|
|
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
|
|
model.default_cfg = default_cfgs['ig_resnext101_32x32d']
|
|
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['ig_resnext101_32x32d']
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=32,
|
|
|
|
|
|
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def ig_resnext101_32x48d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def ig_resnext101_32x48d(pretrained=True, **kwargs):
|
|
|
|
"""Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data
|
|
|
|
"""Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
and finetuned on ImageNet from Figure 5 in
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
|
|
Args:
|
|
|
|
"""
|
|
|
|
pretrained (bool): load pretrained weights
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=48, **kwargs)
|
|
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
|
|
model.default_cfg = default_cfgs['ig_resnext101_32x48d']
|
|
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
default_cfg = default_cfgs['ig_resnext101_32x48d']
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=48,
|
|
|
|
|
|
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def ssl_resnet18(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-supervised ResNet-18 model pre-trained on YFCC100M dataset and finetuned on ImageNet
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['ssl_resnet18']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def ssl_resnet50(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-supervised ResNet-50 model pre-trained on YFCC100M dataset and finetuned on ImageNet
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['ssl_resnet50']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def ssl_resnext50_32x4d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-supervised ResNeXt-50 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['ssl_resnext50_32x4d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def ssl_resnext101_32x4d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-supervised ResNeXt-101 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=4, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['ssl_resnext101_32x4d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def ssl_resnext101_32x8d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-supervised ResNeXt-101 32x8 model pre-trained on YFCC100M dataset and finetuned on ImageNet
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['ssl_resnext101_32x8d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def ssl_resnext101_32x16d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-supervised ResNeXt-101 32x16 model pre-trained on YFCC100M dataset and finetuned on ImageNet
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=16, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['ssl_resnext101_32x16d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def swsl_resnet18(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-weakly supervised Resnet-18 model pre-trained on 1B weakly supervised
|
|
|
|
|
|
|
|
image dataset and finetuned on ImageNet.
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['swsl_resnet18']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def swsl_resnet50(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-weakly supervised ResNet-50 model pre-trained on 1B weakly supervised
|
|
|
|
|
|
|
|
image dataset and finetuned on ImageNet.
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['swsl_resnet50']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def swsl_resnext50_32x4d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-weakly supervised ResNeXt-50 32x4 model pre-trained on 1B weakly supervised
|
|
|
|
|
|
|
|
image dataset and finetuned on ImageNet.
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['swsl_resnext50_32x4d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def swsl_resnext101_32x4d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-weakly supervised ResNeXt-101 32x4 model pre-trained on 1B weakly supervised
|
|
|
|
|
|
|
|
image dataset and finetuned on ImageNet.
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=4, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['swsl_resnext101_32x4d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def swsl_resnext101_32x8d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-weakly supervised ResNeXt-101 32x8 model pre-trained on 1B weakly supervised
|
|
|
|
|
|
|
|
image dataset and finetuned on ImageNet.
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=8, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['swsl_resnext101_32x8d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def swsl_resnext101_32x16d(pretrained=True, **kwargs):
|
|
|
|
|
|
|
|
"""Constructs a semi-weakly supervised ResNeXt-101 32x16 model pre-trained on 1B weakly supervised
|
|
|
|
|
|
|
|
image dataset and finetuned on ImageNet.
|
|
|
|
|
|
|
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
|
|
|
|
|
|
|
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=16, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['swsl_resnext101_32x16d']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3))
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|