Update davit.py

pull/1630/head
Fredo Guan 3 years ago
parent 55defd36fc
commit b6c3724628

@ -349,12 +349,16 @@ class SpatialBlock(nn.Module):
class DaViT(nn.Module): class DaViT(nn.Module):
r""" Dual Attention Transformer r""" DaViT
A PyTorch implementation of `DaViT: Dual Attention Vision Transformers` - https://arxiv.org/abs/2204.03645
Args: Args:
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3 in_chans (int): Number of input image channels. Default: 3
embed_dims (tuple(int)): Patch embedding dimension. Default: (64, 128, 192, 256) num_classes (int): Number of classes for classification head. Default: 1000
num_heads (tuple(int)): Number of attention heads in different layers. Default: (4, 8, 12, 16) depths (tuple(int)): Number of blocks in each stage. Default: (1, 1, 3, 1)
patch_size (int | tuple(int)): Patch size. Default: 4
embed_dims (tuple(int)): Patch embedding dimension. Default: (96, 192, 384, 768)
num_heads (tuple(int)): Number of attention heads in different layers. Default: (3, 6, 12, 24)
window_size (int): Window size. Default: 7 window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
@ -380,11 +384,10 @@ class DaViT(nn.Module):
cpe_act=False, cpe_act=False,
drop_rate=0., drop_rate=0.,
attn_drop_rate=0., attn_drop_rate=0.,
img_size=224,
num_classes=1000, num_classes=1000,
global_pool='avg', global_pool='avg',
#features_only = False **kwargs
**kwargs): ):
super().__init__() super().__init__()
architecture = [[index] * item for index, item in enumerate(depths)] architecture = [[index] * item for index, item in enumerate(depths)]
@ -399,7 +402,6 @@ class DaViT(nn.Module):
self.num_features = embed_dims[-1] self.num_features = embed_dims[-1]
self.drop_rate=drop_rate self.drop_rate=drop_rate
self.grad_checkpointing = False self.grad_checkpointing = False
self._features_only = kwargs.get('features_only', False)
self.feature_info = [] self.feature_info = []
self.patch_embeds = nn.ModuleList([ self.patch_embeds = nn.ModuleList([
@ -409,12 +411,11 @@ class DaViT(nn.Module):
overlapped=overlapped_patch) overlapped=overlapped_patch)
for i in range(self.num_stages)]) for i in range(self.num_stages)])
#main_blocks = [] self.stages = nn.ModuleList()
self.main_blocks = nn.ModuleList() for stage_id, stage_param in enumerate(self.architecture):
for block_id, block_param in enumerate(self.architecture): layer_offset_id = len(list(itertools.chain(*self.architecture[:stage_id])))
layer_offset_id = len(list(itertools.chain(*self.architecture[:block_id])))
block = nn.ModuleList([ stage = nn.ModuleList([
nn.ModuleList([ nn.ModuleList([
ChannelBlock( ChannelBlock(
dim=self.embed_dims[item], dim=self.embed_dims[item],
@ -438,74 +439,18 @@ class DaViT(nn.Module):
window_size=window_size, window_size=window_size,
) if attention_type == 'spatial' else None ) if attention_type == 'spatial' else None
for attention_id, attention_type in enumerate(attention_types)] for attention_id, attention_type in enumerate(attention_types)]
) for layer_id, item in enumerate(block_param) ) for layer_id, item in enumerate(stage_param)
]) ])
self.main_blocks.add_module(f'block_{block_id}', block) self.main_blocks.add_module(f'stage_{stage_id}', stage)
self.feature_info += [dict(num_chs=self.embed_dims[block_id], reduction = 2, module=f'block_{block_id}')] self.feature_info += [dict(num_chs=self.embed_dims[stage_id], reduction = 2, module=f'stage_{stage_id}')]
#self.main_blocks = nn.ModuleList(main_blocks)
'''
# layer norms for pyramid feature extraction self.norm = norm_layer(self.num_features)
#
# TODO implement pyramid feature extraction
#
# davit should be a good transformer candidate, since the only official implementation
# is for segmentation and detection
for i_layer in range(self.num_stages):
layer = norm_layer(self.embed_dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
'''
self.norms = norm_layer(self.num_features)
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
self.apply(self._init_weights) self.apply(self._init_weights)
#self._update_forward_fn()
#self.forward = self._get_forward_fn()
'''
if self._features_only == True:
self.forward = self.forward_features_full
else:
self.forward = self.forward_classification
'''
'''
def _get_forward_fn(self):
if self._features_only == True:
return self.forward_features_full
else:
return self.forward_classification
'''
'''
@torch.jit.ignore
def _get_forward_fn(self):
if self._features_only == True:
return self.forward_features_full
else:
return self.forward_classification
'''
@torch.jit.ignore
def _update_forward_fn(self):
if self._features_only == True:
self.forward = self.forward_pyramid_features
else:
self.forward = self.forward_classification
@property
def features_only(self):
return self._features_only
@features_only.setter
def features_only(self, new_value : bool):
self._features_only = new_value
#self.forward = self._get_forward_fn()
self._update_forward_fn()
def _init_weights(self, m): def _init_weights(self, m):
if isinstance(m, nn.Linear): if isinstance(m, nn.Linear):
@ -516,8 +461,6 @@ class DaViT(nn.Module):
nn.init.constant_(m.bias, 0) nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore @torch.jit.ignore
def set_grad_checkpointing(self, enable=True): def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable self.grad_checkpointing = enable
@ -534,15 +477,11 @@ class DaViT(nn.Module):
def forward_network(self, x): def forward_network(self, x):
#x, size = self.patch_embeds[0](x, (x.size(2), x.size(3)))
size: Tuple[int, int] = (x.size(2), x.size(3)) size: Tuple[int, int] = (x.size(2), x.size(3))
features = [x] features = [x]
sizes = [size] sizes = [size]
#branches = [0]
for patch_layer, stage in zip(self.patch_embeds, self.main_blocks): for patch_layer, stage in enumerate(zip(self.patch_embeds, self.stages)):
features[-1], sizes[-1] = patch_layer(features[-1], sizes[-1]) features[-1], sizes[-1] = patch_layer(features[-1], sizes[-1])
for _, block in enumerate(stage): for _, block in enumerate(stage):
for _, layer in enumerate(block): for _, layer in enumerate(block):
@ -551,62 +490,14 @@ class DaViT(nn.Module):
else: else:
features[-1], sizes[-1] = layer(features[-1], sizes[-1]) features[-1], sizes[-1] = layer(features[-1], sizes[-1])
# don't append outputs of last stage, since they are already there
if(len(features) < self.num_stages):
features.append(features[-1]) features.append(features[-1])
sizes.append(sizes[-1]) sizes.append(sizes[-1])
'''
for block_index, block_param in enumerate(self.architecture):
branch_ids = sorted(set(block_param))
for branch_id in branch_ids:
if branch_id not in branches:
x, size = self.patch_embeds[branch_id](features[-1], sizes[-1])
features.append(x)
sizes.append(size)
branches.append(branch_id)
block_index : int = block_index
if block_index not in branches:
x, size = self.patch_embeds[block_index](features[-1], sizes[-1])
features.append(x)
sizes.append(size)
branches.append(branch_id)
for layer_index, branch_id in enumerate(block_param):
layer_index : int = layer_index
branch_id : int = branch_id
if self.grad_checkpointing and not torch.jit.is_scripting():
features[branch_id], _ = checkpoint.checkpoint(self.main_blocks[block_index][layer_index], features[branch_id], sizes[branch_id])
else:
features[branch_id], _ = self.main_blocks[block_index][layer_index](features[branch_id], sizes[branch_id])
# pyramid feature norm logic, no weights for these extra norm layers from pretrained classification model
outs = []
for i in range(self.num_stages):
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(features[i])
H, W = sizes[i]
out = x_out.view(-1, H, W, self.embed_dims[i]).permute(0, 3, 1, 2).contiguous()
outs.append(out)
'''
# non-normalized pyramid features + corresponding sizes # non-normalized pyramid features + corresponding sizes
return features[:-1], sizes[:-1] return features, sizes
def forward_pyramid_features(self, x): def forward_pyramid_features(self, x):
x, sizes = self.forward_network(x) x, sizes = self.forward_network(x)
@ -620,22 +511,19 @@ class DaViT(nn.Module):
def forward_features(self, x): def forward_features(self, x):
x, sizes = self.forward_network(x) x, sizes = self.forward_network(x)
# take final feature and norm # take final feature and norm
x = self.norms(x[-1]) x = self.norm(x[-1])
H, W = sizes[-1] H, W = sizes[-1]
x = x.view(-1, H, W, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous() x = x.view(-1, H, W, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous()
#print(x.shape)
return x return x
def forward_head(self, x, pre_logits: bool = False): def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits) return self.head(x, pre_logits=pre_logits)
def forward_classification(self, x): def forward(self, x):
x = self.forward_features(x) x = self.forward_features(x)
x = self.forward_head(x) x = self.forward_head(x)
return x return x
def forward(self, x):
return x
def checkpoint_filter_fn(state_dict, model): def checkpoint_filter_fn(state_dict, model):
@ -647,9 +535,8 @@ def checkpoint_filter_fn(state_dict, model):
state_dict = state_dict['state_dict'] state_dict = state_dict['state_dict']
out_dict = {} out_dict = {}
import re
for k, v in state_dict.items(): for k, v in state_dict.items():
k = k.replace('main_blocks.', 'main_blocks.stage_')
k = k.replace('head.', 'head.fc.') k = k.replace('head.', 'head.fc.')
out_dict[k] = v out_dict[k] = v
return out_dict return out_dict
@ -657,10 +544,15 @@ def checkpoint_filter_fn(state_dict, model):
def _create_davit(variant, pretrained=False, **kwargs): def _create_davit(variant, pretrained=False, **kwargs):
out_indices = (i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) default_out_indices = (i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
feature_cfg = {'out_indices': out_indices} out_indices = kwargs.pop('out_indices', default_out_indices)
model = build_model_with_cfg(DaViT, variant, pretrained, model = build_model_with_cfg(
pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=feature_cfg, **kwargs) DaViT,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs)
return model return model

Loading…
Cancel
Save