Update ByoaNet comments. Fix first Steam feat chs for ByobNet.

pull/556/head
Ross Wightman 4 years ago
parent 16f7aa9f54
commit b3d7580df1

@ -8,7 +8,7 @@ Currently used to implement experimential variants of:
* Lambda ResNets * Lambda ResNets
* HaloNets * HaloNets
Consider all of the models here a WIP and likely to change. Consider all of the models definitions here as experimental WIP and likely to change.
Hacked together by / copyright Ross Wightman, 2021. Hacked together by / copyright Ross Wightman, 2021.
""" """
@ -372,7 +372,7 @@ def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs):
@register_model @register_model
def botnet50t_224(pretrained=False, **kwargs): def botnet50t_224(pretrained=False, **kwargs):
""" """ Bottleneck Transformer w/ ResNet50-T backbone. Bottleneck attn in final stage.
""" """
kwargs.setdefault('img_size', 224) kwargs.setdefault('img_size', 224)
return _create_byoanet('botnet50t_224', 'botnet50t', pretrained=pretrained, **kwargs) return _create_byoanet('botnet50t_224', 'botnet50t', pretrained=pretrained, **kwargs)
@ -380,7 +380,7 @@ def botnet50t_224(pretrained=False, **kwargs):
@register_model @register_model
def botnet50t_c4c5_224(pretrained=False, **kwargs): def botnet50t_c4c5_224(pretrained=False, **kwargs):
""" """ Bottleneck Transformer w/ ResNet50-T backbone. Bottleneck attn in last two stages.
""" """
kwargs.setdefault('img_size', 224) kwargs.setdefault('img_size', 224)
return _create_byoanet('botnet50t_c4c5_224', 'botnet50t_c4c5', pretrained=pretrained, **kwargs) return _create_byoanet('botnet50t_c4c5_224', 'botnet50t_c4c5', pretrained=pretrained, **kwargs)
@ -388,41 +388,43 @@ def botnet50t_c4c5_224(pretrained=False, **kwargs):
@register_model @register_model
def halonet_h1(pretrained=False, **kwargs): def halonet_h1(pretrained=False, **kwargs):
""" """ HaloNet-H1. Halo attention in all stages as per the paper.
This runs very slowly, param count lower than paper --> something is wrong.
""" """
return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs) return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs)
@register_model @register_model
def halonet_h1_c4c5(pretrained=False, **kwargs): def halonet_h1_c4c5(pretrained=False, **kwargs):
""" """ HaloNet-H1 config w/ attention in last two stages.
""" """
return _create_byoanet('halonet_h1_c4c5', pretrained=pretrained, **kwargs) return _create_byoanet('halonet_h1_c4c5', pretrained=pretrained, **kwargs)
@register_model @register_model
def halonet26t(pretrained=False, **kwargs): def halonet26t(pretrained=False, **kwargs):
""" """ HaloNet w/ a ResNet26-t backbone, Hallo attention in final stage
""" """
return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs) return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs)
@register_model @register_model
def halonet50t(pretrained=False, **kwargs): def halonet50t(pretrained=False, **kwargs):
""" """ HaloNet w/ a ResNet50-t backbone, Hallo attention in final stage
""" """
return _create_byoanet('halonet50t', pretrained=pretrained, **kwargs) return _create_byoanet('halonet50t', pretrained=pretrained, **kwargs)
@register_model @register_model
def lambda_resnet26t(pretrained=False, **kwargs): def lambda_resnet26t(pretrained=False, **kwargs):
""" """ Lambda-ResNet-26T. Lambda layers in one C4 stage and all C5.
""" """
return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs) return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs)
@register_model @register_model
def lambda_resnet50t(pretrained=False, **kwargs): def lambda_resnet50t(pretrained=False, **kwargs):
""" """ Lambda-ResNet-50T. Lambda layers in one C4 stage and all C5.
""" """
return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs) return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs)

@ -546,7 +546,7 @@ class Stem(nn.Sequential):
layer_fn = layers.conv_norm_act if na else create_conv2d layer_fn = layers.conv_norm_act if na else create_conv2d
conv_name = f'conv{i + 1}' conv_name = f'conv{i + 1}'
if i > 0 and s > 1: if i > 0 and s > 1:
self.feature_info.append(dict(num_chs=ch, reduction=curr_stride, module=prev_feat)) self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat))
self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s)) self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s))
prev_chs = ch prev_chs = ch
curr_stride *= s curr_stride *= s

Loading…
Cancel
Save