Working on CutMix impl as per #8, integrating with Mixup, currently experimenting...

pull/218/head
Ross Wightman 5 years ago
parent 569419b38d
commit b3cb5f3275

@ -4,6 +4,6 @@ from .dataset import Dataset, DatasetTar, AugMixDataset
from .transforms import *
from .loader import create_loader
from .transforms_factory import create_transform
from .mixup import mixup_batch, FastCollateMixup
from .mixup import mix_batch, FastCollateMixup, FastCollateMixupBatchwise, FastCollateMixupElementwise
from .auto_augment import RandAugment, AutoAugment, rand_augment_ops, auto_augment_policy,\
rand_augment_transform, auto_augment_transform

@ -89,7 +89,7 @@ class Dataset(data.Dataset):
return img, target
def __len__(self):
return len(self.imgs)
return len(self.samples)
def filenames(self, indices=[], basename=False):
if indices:

@ -1,5 +1,30 @@
""" Mixup and Cutmix
Papers:
mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412)
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899)
Code Reference:
CutMix: https://github.com/clovaai/CutMix-PyTorch
Hacked together by Ross Wightman
"""
import numpy as np
import torch
import math
from enum import IntEnum
class MixupMode(IntEnum):
MIXUP = 0
CUTMIX = 1
RANDOM = 2
@classmethod
def from_str(cls, value):
return cls[value.upper()]
def one_hot(x, num_classes, on_value=1., off_value=0., device='cuda'):
@ -12,7 +37,7 @@ def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda'):
on_value = 1. - smoothing + off_value
y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device)
y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device)
return lam*y1 + (1. - lam)*y2
return y1 * lam + y2 * (1. - lam)
def mixup_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False):
@ -24,28 +49,167 @@ def mixup_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disab
return input, target
def rand_bbox(size, ratio):
H, W = size[-2:]
ratio = max(min(ratio, 0.8), 0.2)
cut_h, cut_w = int(H * ratio), int(W * ratio)
cy, cx = np.random.randint(H), np.random.randint(W)
yl, yh = np.clip(cy - cut_h // 2, 0, H), np.clip(cy + cut_h // 2, 0, H)
xl, xh = np.clip(cx - cut_w // 2, 0, W), np.clip(cx + cut_w // 2, 0, W)
return yl, yh, xl, xh
def cutmix_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False):
lam = 1.
if not disable:
lam = np.random.beta(alpha, alpha)
if lam != 1:
ratio = math.sqrt(1. - lam)
yl, yh, xl, xh = rand_bbox(input.size(), ratio)
input[:, :, yl:yh, xl:xh] = input.flip(0)[:, :, yl:yh, xl:xh]
target = mixup_target(target, num_classes, lam, smoothing)
return input, target
def _resolve_mode(mode):
mode = MixupMode.from_str(mode) if isinstance(mode, str) else mode
if mode == MixupMode.RANDOM:
mode = MixupMode(np.random.rand() > 0.5)
return mode # will be one of cutmix or mixup
def mix_batch(
input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False, mode=MixupMode.MIXUP):
mode = _resolve_mode(mode)
if mode == MixupMode.CUTMIX:
return mixup_batch(input, target, alpha, num_classes, smoothing, disable)
else:
return cutmix_batch(input, target, alpha, num_classes, smoothing, disable)
class FastCollateMixup:
"""Fast Collate Mixup that applies different params to each element + flipped pair
def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000):
NOTE once experiments are done, one of the three variants will remain with this class name
"""
def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000, mode=MixupMode.MIXUP):
self.mixup_alpha = mixup_alpha
self.label_smoothing = label_smoothing
self.num_classes = num_classes
self.mode = MixupMode.from_str(mode) if isinstance(mode, str) else mode
self.mixup_enabled = True
self.correct_lam = False # correct lambda based on clipped area for cutmix
def __call__(self, batch):
def _do_mix(self, tensor, batch):
batch_size = len(batch)
lam_out = torch.ones(batch_size)
for i in range(batch_size//2):
j = batch_size - i - 1
lam = 1.
if self.mixup_enabled:
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu')
if _resolve_mode(self.mode) == MixupMode.CUTMIX:
mixed_i, mixed_j = batch[i][0].astype(np.float32), batch[j][0].astype(np.float32)
ratio = math.sqrt(1. - lam)
if lam != 1:
yl, yh, xl, xh = rand_bbox(tensor.size(), ratio)
mixed_i[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32)
mixed_j[:, yl:yh, xl:xh] = batch[i][0][:, yl:yh, xl:xh].astype(np.float32)
if self.correct_lam:
lam_corrected = (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
lam_out[i] -= lam_corrected
lam_out[j] -= lam_corrected
else:
lam_out[i] = lam
lam_out[j] = lam
else:
mixed_i = batch[i][0].astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam)
mixed_j = batch[j][0].astype(np.float32) * lam + batch[i][0].astype(np.float32) * (1 - lam)
lam_out[i] = lam
lam_out[j] = lam
np.round(mixed_i, out=mixed_i)
np.round(mixed_j, out=mixed_j)
tensor[i] += torch.from_numpy(mixed_i.astype(np.uint8))
tensor[j] += torch.from_numpy(mixed_j.astype(np.uint8))
return lam_out
def __call__(self, batch):
batch_size = len(batch)
assert batch_size % 2 == 0, 'Batch size should be even when using this'
tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
lam = self._do_mix(tensor, batch)
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
target = mixup_target(target, self.num_classes, lam.unsqueeze(1), self.label_smoothing, device='cpu')
return tensor, target
class FastCollateMixupElementwise(FastCollateMixup):
"""Fast Collate Mixup that applies different params to each batch element
NOTE this is for experimentation, may remove at some point
"""
def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000, mode=MixupMode.MIXUP):
super(FastCollateMixupElementwise, self).__init__(mixup_alpha, label_smoothing, num_classes, mode)
def _do_mix(self, tensor, batch):
batch_size = len(batch)
lam_out = torch.ones(batch_size)
for i in range(batch_size):
lam = 1.
if self.mixup_enabled:
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
if _resolve_mode(self.mode) == MixupMode.CUTMIX:
mixed = batch[i][0].astype(np.float32)
ratio = math.sqrt(1. - lam)
if lam != 1:
yl, yh, xl, xh = rand_bbox(tensor.size(), ratio)
mixed[:, yl:yh, xl:xh] = batch[batch_size - i - 1][0][:, yl:yh, xl:xh].astype(np.float32)
if self.correct_lam:
lam_out[i] -= (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
else:
lam_out[i] = lam
else:
mixed = batch[i][0].astype(np.float32) * lam + \
batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam)
lam_out[i] = lam
np.round(mixed, out=mixed)
tensor[i] += torch.from_numpy(mixed.astype(np.uint8))
return lam_out
return tensor, target
class FastCollateMixupBatchwise(FastCollateMixup):
"""Fast Collate Mixup that applies same params to whole batch
NOTE this is for experimentation, may remove at some point
"""
def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000, mode=MixupMode.MIXUP):
super(FastCollateMixupBatchwise, self).__init__(mixup_alpha, label_smoothing, num_classes, mode)
def _do_mix(self, tensor, batch):
batch_size = len(batch)
lam_out = torch.ones(batch_size)
lam = 1.
cutmix = _resolve_mode(self.mode) == MixupMode.CUTMIX
if self.mixup_enabled:
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
if cutmix and self.correct_lam:
ratio = math.sqrt(1. - lam)
yl, yh, xl, xh = rand_bbox(batch[0][0].shape, ratio)
lam = 1 - (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
for i in range(batch_size):
if cutmix:
mixed = batch[i][0].astype(np.float32)
if lam != 1:
mixed[:, yl:yh, xl:xh] = batch[batch_size - i - 1][0][:, yl:yh, xl:xh].astype(np.float32)
lam_out[i] -= (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1])
else:
mixed = batch[i][0].astype(np.float32) * lam + \
batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam)
np.round(mixed, out=mixed)
tensor[i] += torch.from_numpy(mixed.astype(np.uint8))
return lam

@ -28,7 +28,8 @@ except ImportError:
from torch.nn.parallel import DistributedDataParallel as DDP
has_apex = False
from timm.data import Dataset, create_loader, resolve_data_config, FastCollateMixup, mixup_batch, AugMixDataset
from timm.data import Dataset, create_loader, resolve_data_config, FastCollateMixup, mix_batch, AugMixDataset,\
FastCollateMixupElementwise, FastCollateMixupBatchwise
from timm.models import create_model, resume_checkpoint, convert_splitbn_model
from timm.utils import *
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy
@ -134,6 +135,8 @@ parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
parser.add_argument('--mixup-mode', type=str, default='mixup',
help='Mixup mode ("mixup", "cutmix", "random", default: "mixup")')
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
help='turn off mixup after this epoch, disabled if 0 (default: 0)')
parser.add_argument('--smoothing', type=float, default=0.1,
@ -352,7 +355,7 @@ def main():
collate_fn = None
if args.prefetcher and args.mixup > 0:
assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup)
collate_fn = FastCollateMixup(args.mixup, args.smoothing, args.num_classes)
collate_fn = FastCollateMixup(args.mixup, args.smoothing, args.num_classes, args.mixup_mode)
if num_aug_splits > 1:
dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)
@ -504,10 +507,10 @@ def train_epoch(
if not args.prefetcher:
input, target = input.cuda(), target.cuda()
if args.mixup > 0.:
input, target = mixup_batch(
input, target = mix_batch(
input, target,
alpha=args.mixup, num_classes=args.num_classes, smoothing=args.smoothing,
disable=args.mixup_off_epoch and epoch >= args.mixup_off_epoch)
disable=args.mixup_off_epoch and epoch >= args.mixup_off_epoch, mode=args.mixup_mode)
output = model(input)

Loading…
Cancel
Save