|
|
|
@ -1,8 +1,6 @@
|
|
|
|
|
"""PyTorch ResNet
|
|
|
|
|
|
|
|
|
|
This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with
|
|
|
|
|
additional dropout and dynamic global avg/max pool.
|
|
|
|
|
|
|
|
|
|
ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman
|
|
|
|
|
Copyright 2020 Ross Wightman
|
|
|
|
|
"""
|
|
|
|
@ -442,7 +440,7 @@ def drop_blocks(drop_block_rate=0.):
|
|
|
|
|
|
|
|
|
|
def make_blocks(
|
|
|
|
|
block_fn, channels, block_repeats, inplanes, reduce_first=1, output_stride=32,
|
|
|
|
|
down_kernel_size=1, avg_down=False, drop_block_rate=0., drop_path_rate=0., first_conv_stride=1, **kwargs):
|
|
|
|
|
down_kernel_size=1, avg_down=False, drop_block_rate=0., drop_path_rate=0., **kwargs):
|
|
|
|
|
stages = []
|
|
|
|
|
feature_info = []
|
|
|
|
|
net_num_blocks = sum(block_repeats)
|
|
|
|
@ -451,7 +449,7 @@ def make_blocks(
|
|
|
|
|
dilation = prev_dilation = 1
|
|
|
|
|
for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))):
|
|
|
|
|
stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it
|
|
|
|
|
stride = first_conv_stride if stage_idx == 0 else 2
|
|
|
|
|
stride = 1 if stage_idx == 0 else 2
|
|
|
|
|
if net_stride >= output_stride:
|
|
|
|
|
dilation *= stride
|
|
|
|
|
stride = 1
|
|
|
|
@ -558,12 +556,12 @@ class ResNet(nn.Module):
|
|
|
|
|
cardinality=1, base_width=64, stem_width=64, stem_type='',
|
|
|
|
|
output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False,
|
|
|
|
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0.,
|
|
|
|
|
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None, skip_stem_max_pool=False):
|
|
|
|
|
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None, replace_stem_max_pool=False):
|
|
|
|
|
block_args = block_args or dict()
|
|
|
|
|
assert output_stride in (8, 16, 32)
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
|
self.skip_stem_max_pool = skip_stem_max_pool
|
|
|
|
|
self.replace_stem_max_pool = replace_stem_max_pool
|
|
|
|
|
super(ResNet, self).__init__()
|
|
|
|
|
|
|
|
|
|
# Stem
|
|
|
|
@ -588,8 +586,7 @@ class ResNet(nn.Module):
|
|
|
|
|
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
|
|
|
|
|
|
|
|
|
|
# Stem Pooling
|
|
|
|
|
if not self.skip_stem_max_pool:
|
|
|
|
|
first_conv_stride = 1
|
|
|
|
|
if not self.replace_stem_max_pool:
|
|
|
|
|
if aa_layer is not None:
|
|
|
|
|
self.maxpool = nn.Sequential(*[
|
|
|
|
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
|
|
|
@ -597,8 +594,11 @@ class ResNet(nn.Module):
|
|
|
|
|
else:
|
|
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
|
|
else:
|
|
|
|
|
self.maxpool = nn.Identity()
|
|
|
|
|
first_conv_stride = 2
|
|
|
|
|
self.maxpool = nn.Sequential(*[
|
|
|
|
|
nn.Conv2d(inplanes, inplanes, 3, stride=2, padding=1),
|
|
|
|
|
nn.BatchNorm2d(inplanes),
|
|
|
|
|
nn.ReLU()
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
# Feature Blocks
|
|
|
|
|
channels = [64, 128, 256, 512]
|
|
|
|
@ -606,7 +606,7 @@ class ResNet(nn.Module):
|
|
|
|
|
block, channels, layers, inplanes, cardinality=cardinality, base_width=base_width,
|
|
|
|
|
output_stride=output_stride, reduce_first=block_reduce_first, avg_down=avg_down,
|
|
|
|
|
down_kernel_size=down_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer,
|
|
|
|
|
drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, first_conv_stride=first_conv_stride, **block_args)
|
|
|
|
|
drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, **block_args)
|
|
|
|
|
for stage in stage_modules:
|
|
|
|
|
self.add_module(*stage) # layer1, layer2, etc
|
|
|
|
|
self.feature_info.extend(stage_feature_info)
|
|
|
|
@ -1078,7 +1078,7 @@ def ecaresnet50d(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs50(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs50', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
@ -1086,7 +1086,7 @@ def resnetrs50(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs101(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs101', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
@ -1094,7 +1094,7 @@ def resnetrs101(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs152(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs152', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
@ -1102,7 +1102,7 @@ def resnetrs152(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs200(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs200', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
@ -1110,7 +1110,7 @@ def resnetrs200(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs270(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs270', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
@ -1119,7 +1119,7 @@ def resnetrs270(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs350(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs350', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
@ -1127,7 +1127,7 @@ def resnetrs350(pretrained=False, **kwargs):
|
|
|
|
|
@register_model
|
|
|
|
|
def resnetrs420(pretrained=False, **kwargs):
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', skip_stem_max_pool=True,
|
|
|
|
|
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
|
|
|
|
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
|
|
|
|
|
return _create_resnet('resnetrs420', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|