pull/175/head
parent
d72ddafe56
commit
ad150e7018
@ -1,57 +1,75 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
|
||||
results = {
|
||||
'results-imagenet.csv': pd.read_csv('results-imagenet.csv'),
|
||||
'results-imagenetv2-matched-frequency.csv': pd.read_csv('results-imagenetv2-matched-frequency.csv'),
|
||||
'results-sketch.csv': pd.read_csv('results-sketch.csv'),
|
||||
'results-imagenet-a.csv': pd.read_csv('results-imagenet-a.csv'),
|
||||
'results-imagenet-r.csv': pd.read_csv('results-imagenet-r.csv'),
|
||||
'results-imagenet-real.csv': pd.read_csv('results-imagenet-real.csv'),
|
||||
'results-imagenet.csv': [
|
||||
'results-imagenet-real.csv',
|
||||
'results-imagenetv2-matched-frequency.csv',
|
||||
'results-sketch.csv'
|
||||
],
|
||||
'results-imagenet-a-clean.csv': [
|
||||
'results-imagenet-a.csv',
|
||||
],
|
||||
'results-imagenet-r-clean.csv': [
|
||||
'results-imagenet-r.csv',
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def diff(csv_file):
|
||||
base_models = results['results-imagenet.csv']['model'].values
|
||||
csv_models = results[csv_file]['model'].values
|
||||
def diff(base_df, test_csv):
|
||||
base_models = base_df['model'].values
|
||||
test_df = pd.read_csv(test_csv)
|
||||
test_models = test_df['model'].values
|
||||
|
||||
rank_diff = np.zeros_like(csv_models, dtype='object')
|
||||
top1_diff = np.zeros_like(csv_models, dtype='object')
|
||||
top5_diff = np.zeros_like(csv_models, dtype='object')
|
||||
rank_diff = np.zeros_like(test_models, dtype='object')
|
||||
top1_diff = np.zeros_like(test_models, dtype='object')
|
||||
top5_diff = np.zeros_like(test_models, dtype='object')
|
||||
|
||||
for rank, model in enumerate(csv_models):
|
||||
for rank, model in enumerate(test_models):
|
||||
if model in base_models:
|
||||
base_rank = int(np.where(base_models==model)[0])
|
||||
top1_d = results[csv_file]['top1'][rank]-results['results-imagenet.csv']['top1'][base_rank]
|
||||
top5_d = results[csv_file]['top5'][rank]-results['results-imagenet.csv']['top5'][base_rank]
|
||||
base_rank = int(np.where(base_models == model)[0])
|
||||
top1_d = test_df['top1'][rank] - base_df['top1'][base_rank]
|
||||
top5_d = test_df['top5'][rank] - base_df['top5'][base_rank]
|
||||
|
||||
# rank_diff
|
||||
if rank == base_rank: rank_diff[rank] = f'='
|
||||
elif rank > base_rank: rank_diff[rank] = f'-{rank-base_rank}'
|
||||
else: rank_diff[rank] = f'+{base_rank-rank}'
|
||||
if rank == base_rank:
|
||||
rank_diff[rank] = f'0'
|
||||
elif rank > base_rank:
|
||||
rank_diff[rank] = f'-{rank - base_rank}'
|
||||
else:
|
||||
rank_diff[rank] = f'+{base_rank - rank}'
|
||||
|
||||
# top1_diff
|
||||
if top1_d >= .0: top1_diff[rank] = f'+{top1_d:.3f}'
|
||||
else : top1_diff[rank] = f'-{abs(top1_d):.3f}'
|
||||
if top1_d >= .0:
|
||||
top1_diff[rank] = f'+{top1_d:.3f}'
|
||||
else:
|
||||
top1_diff[rank] = f'-{abs(top1_d):.3f}'
|
||||
|
||||
# top5_diff
|
||||
if top5_d >= .0: top5_diff[rank] = f'+{top5_d:.3f}'
|
||||
else : top5_diff[rank] = f'-{abs(top5_d):.3f}'
|
||||
if top5_d >= .0:
|
||||
top5_diff[rank] = f'+{top5_d:.3f}'
|
||||
else:
|
||||
top5_diff[rank] = f'-{abs(top5_d):.3f}'
|
||||
|
||||
else:
|
||||
rank_diff[rank] = 'X'
|
||||
top1_diff[rank] = 'X'
|
||||
top5_diff[rank] = 'X'
|
||||
|
||||
results[csv_file]['rank_diff'] = rank_diff
|
||||
results[csv_file]['top1_diff'] = top1_diff
|
||||
results[csv_file]['top5_diff'] = top5_diff
|
||||
rank_diff[rank] = ''
|
||||
top1_diff[rank] = ''
|
||||
top5_diff[rank] = ''
|
||||
|
||||
results[csv_file]['param_count'] = results[csv_file]['param_count'].map('{:,.2f}'.format)
|
||||
test_df['top1_diff'] = top1_diff
|
||||
test_df['top5_diff'] = top5_diff
|
||||
test_df['rank_diff'] = rank_diff
|
||||
|
||||
results[csv_file].to_csv(csv_file, index=False, float_format='%.3f')
|
||||
test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format)
|
||||
test_df.sort_values('top1', ascending=False, inplace=True)
|
||||
test_df.to_csv(test_csv, index=False, float_format='%.3f')
|
||||
|
||||
|
||||
for csv_file in results:
|
||||
if csv_file != 'results-imagenet.csv':
|
||||
diff(csv_file)
|
||||
for base_results, test_results in results.items():
|
||||
base_df = pd.read_csv(base_results)
|
||||
base_df.sort_values('top1', ascending=False, inplace=True)
|
||||
for test_csv in test_results:
|
||||
diff(base_df, test_csv)
|
||||
base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format)
|
||||
base_df.to_csv(base_results, index=False, float_format='%.3f')
|
||||
|
Loading…
Reference in new issue