|
|
@ -39,6 +39,7 @@ default_cfgs = {
|
|
|
|
'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'),
|
|
|
|
'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'),
|
|
|
|
'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'),
|
|
|
|
'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'),
|
|
|
|
'densenet264': _cfg(url=''),
|
|
|
|
'densenet264': _cfg(url=''),
|
|
|
|
|
|
|
|
'densenet264d_iabn': _cfg(url=''),
|
|
|
|
'tv_densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'),
|
|
|
|
'tv_densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -331,45 +332,6 @@ def densenet121d(pretrained=False, **kwargs):
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def densenet121d_evob(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
r"""Densenet-121 model from
|
|
|
|
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def norm_act_fn(num_features, **kwargs):
|
|
|
|
|
|
|
|
return create_norm_act('EvoNormBatch', num_features, jit=True, **kwargs)
|
|
|
|
|
|
|
|
model = _densenet(
|
|
|
|
|
|
|
|
'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep',
|
|
|
|
|
|
|
|
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def densenet121d_evos(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
r"""Densenet-121 model from
|
|
|
|
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def norm_act_fn(num_features, **kwargs):
|
|
|
|
|
|
|
|
return create_norm_act('EvoNormSample', num_features, jit=True, **kwargs)
|
|
|
|
|
|
|
|
model = _densenet(
|
|
|
|
|
|
|
|
'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep',
|
|
|
|
|
|
|
|
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def densenet121d_iabn(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
r"""Densenet-121 model from
|
|
|
|
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def norm_act_fn(num_features, **kwargs):
|
|
|
|
|
|
|
|
return create_norm_act('iabn', num_features, **kwargs)
|
|
|
|
|
|
|
|
model = _densenet(
|
|
|
|
|
|
|
|
'densenet121tn', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep',
|
|
|
|
|
|
|
|
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def densenet169(pretrained=False, **kwargs):
|
|
|
|
def densenet169(pretrained=False, **kwargs):
|
|
|
|
r"""Densenet-169 model from
|
|
|
|
r"""Densenet-169 model from
|
|
|
@ -410,6 +372,18 @@ def densenet264(pretrained=False, **kwargs):
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def densenet264d_iabn(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
r"""Densenet-264 model with deep stem and Inplace-ABN
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def norm_act_fn(num_features, **kwargs):
|
|
|
|
|
|
|
|
return create_norm_act('iabn', num_features, **kwargs)
|
|
|
|
|
|
|
|
model = _densenet(
|
|
|
|
|
|
|
|
'densenet264d_iabn', growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep',
|
|
|
|
|
|
|
|
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def tv_densenet121(pretrained=False, **kwargs):
|
|
|
|
def tv_densenet121(pretrained=False, **kwargs):
|
|
|
|
r"""Densenet-121 model with original Torchvision weights, from
|
|
|
|
r"""Densenet-121 model with original Torchvision weights, from
|
|
|
|