Add interpolation mode handling to transforms. Removes InterpolationMode warning. Works for torchvision versions w/ and w/o InterpolationMode enum. Fix #738.

more_datasets
Ross Wightman 3 years ago
parent ed41d32637
commit a41de1f666

@ -1,5 +1,10 @@
import torch
import torchvision.transforms.functional as F
try:
from torchvision.transforms.functional import InterpolationMode
has_interpolation_mode = True
except ImportError:
has_interpolation_mode = False
from PIL import Image
import warnings
import math
@ -31,28 +36,50 @@ class ToTensor:
_pil_interpolation_to_str = {
Image.NEAREST: 'PIL.Image.NEAREST',
Image.BILINEAR: 'PIL.Image.BILINEAR',
Image.BICUBIC: 'PIL.Image.BICUBIC',
Image.LANCZOS: 'PIL.Image.LANCZOS',
Image.HAMMING: 'PIL.Image.HAMMING',
Image.BOX: 'PIL.Image.BOX',
Image.NEAREST: 'nearest',
Image.BILINEAR: 'bilinear',
Image.BICUBIC: 'bicubic',
Image.BOX: 'box',
Image.HAMMING: 'hamming',
Image.LANCZOS: 'lanczos',
}
_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()}
def _pil_interp(method):
if method == 'bicubic':
return Image.BICUBIC
elif method == 'lanczos':
return Image.LANCZOS
elif method == 'hamming':
return Image.HAMMING
if has_interpolation_mode:
_torch_interpolation_to_str = {
InterpolationMode.NEAREST: 'nearest',
InterpolationMode.BILINEAR: 'bilinear',
InterpolationMode.BICUBIC: 'bicubic',
InterpolationMode.BOX: 'box',
InterpolationMode.HAMMING: 'hamming',
InterpolationMode.LANCZOS: 'lanczos',
}
_str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()}
else:
_pil_interpolation_to_torch = {}
_torch_interpolation_to_str = {}
def str_to_pil_interp(mode_str):
return _str_to_pil_interpolation[mode_str]
def str_to_interp_mode(mode_str):
if has_interpolation_mode:
return _str_to_torch_interpolation[mode_str]
else:
return _str_to_pil_interpolation[mode_str]
def interp_mode_to_str(mode):
if has_interpolation_mode:
return _torch_interpolation_to_str[mode]
else:
# default bilinear, do we want to allow nearest?
return Image.BILINEAR
return _pil_interpolation_to_str[mode]
_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic'))
class RandomResizedCropAndInterpolation:
@ -82,7 +109,7 @@ class RandomResizedCropAndInterpolation:
if interpolation == 'random':
self.interpolation = _RANDOM_INTERPOLATION
else:
self.interpolation = _pil_interp(interpolation)
self.interpolation = str_to_interp_mode(interpolation)
self.scale = scale
self.ratio = ratio
@ -146,9 +173,9 @@ class RandomResizedCropAndInterpolation:
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation])
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
else:
interpolate_str = _pil_interpolation_to_str[self.interpolation]
interpolate_str = interp_mode_to_str(self.interpolation)
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))

@ -10,7 +10,7 @@ from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform
from timm.data.transforms import _pil_interp, RandomResizedCropAndInterpolation, ToNumpy, ToTensor
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, ToNumpy
from timm.data.random_erasing import RandomErasing
@ -25,7 +25,7 @@ def transforms_noaug_train(
# random interpolation not supported with no-aug
interpolation = 'bilinear'
tfl = [
transforms.Resize(img_size, _pil_interp(interpolation)),
transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)),
transforms.CenterCrop(img_size)
]
if use_prefetcher:
@ -87,7 +87,7 @@ def transforms_imagenet_train(
img_mean=tuple([min(255, round(255 * x)) for x in mean]),
)
if interpolation and interpolation != 'random':
aa_params['interpolation'] = _pil_interp(interpolation)
aa_params['interpolation'] = str_to_pil_interp(interpolation)
if auto_augment.startswith('rand'):
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
elif auto_augment.startswith('augmix'):
@ -147,7 +147,7 @@ def transforms_imagenet_eval(
scale_size = int(math.floor(img_size / crop_pct))
tfl = [
transforms.Resize(scale_size, _pil_interp(interpolation)),
transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)),
transforms.CenterCrop(img_size),
]
if use_prefetcher:

Loading…
Cancel
Save