Add adabound, random erasing

pull/1/head
Ross Wightman 6 years ago
parent 1577c52976
commit 9d927a389a

@ -0,0 +1,61 @@
from __future__ import absolute_import
from torchvision.transforms import *
from PIL import Image
import random
import math
import numpy as np
import torch
class RandomErasing:
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
probability: The probability that the Random Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
mean: Erasing value.
"""
def __init__(
self,
probability=0.5, sl=0.02, sh=1/3, min_aspect=0.3,
per_pixel=False, random=False,
pl=0, ph=1., mean=[0.485, 0.456, 0.406]):
self.probability = probability
self.mean = torch.tensor(mean)
self.sl = sl
self.sh = sh
self.min_aspect = min_aspect
self.pl = pl
self.ph = ph
self.per_pixel = per_pixel # per pixel random, bounded by [pl, ph]
self.random = random # per block random, bounded by [pl, ph]
def __call__(self, img):
if random.random() > self.probability:
return img
chan, img_h, img_w = img.size()
area = img_h * img_w
for attempt in range(100):
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.min_aspect, 1 / self.min_aspect)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
c = torch.empty((chan)).uniform_(self.pl, self.ph) if self.random else self.mean[:chan]
if w < img_w and h < img_h:
top = random.randint(0, img_h - h)
left = random.randint(0, img_w - w)
if self.per_pixel:
img[:, top:top + h, left:left + w] = torch.empty((chan, h, w)).uniform_(self.pl, self.ph)
else:
img[:, top:top + h, left:left + w] = c
return img
return img

@ -2,7 +2,7 @@ import torch
from torchvision import transforms from torchvision import transforms
from PIL import Image from PIL import Image
import math import math
from models.random_erasing import RandomErasing
DEFAULT_CROP_PCT = 0.875 DEFAULT_CROP_PCT = 0.875
@ -21,7 +21,12 @@ class LeNormalize(object):
return tensor return tensor
def transforms_imagenet_train(model_name, img_size=224, scale=(0.1, 1.0), color_jitter=(0.4, 0.4, 0.4)): def transforms_imagenet_train(
model_name,
img_size=224,
scale=(0.1, 1.0),
color_jitter=(0.4, 0.4, 0.4),
random_erasing=0.4):
if 'dpn' in model_name: if 'dpn' in model_name:
normalize = transforms.Normalize( normalize = transforms.Normalize(
mean=IMAGENET_DPN_MEAN, mean=IMAGENET_DPN_MEAN,
@ -33,12 +38,14 @@ def transforms_imagenet_train(model_name, img_size=224, scale=(0.1, 1.0), color_
mean=IMAGENET_DEFAULT_MEAN, mean=IMAGENET_DEFAULT_MEAN,
std=IMAGENET_DEFAULT_STD) std=IMAGENET_DEFAULT_STD)
return transforms.Compose([ tfl = [
transforms.RandomResizedCrop(img_size, scale=scale), transforms.RandomResizedCrop(img_size, scale=scale),
transforms.RandomHorizontalFlip(), transforms.RandomHorizontalFlip(),
transforms.ColorJitter(*color_jitter), transforms.ColorJitter(*color_jitter),
transforms.ToTensor(), transforms.ToTensor()]
normalize]) if random_erasing > 0.:
tfl.append(RandomErasing(random_erasing, per_pixel=True))
return transforms.Compose(tfl + [normalize])
def transforms_imagenet_eval(model_name, img_size=224, crop_pct=None): def transforms_imagenet_eval(model_name, img_size=224, crop_pct=None):

@ -0,0 +1,118 @@
import math
import torch
from torch.optim import Optimizer
class AdaBound(Optimizer):
"""Implements AdaBound algorithm.
It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): Adam learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
final_lr (float, optional): final (SGD) learning rate (default: 0.1)
gamma (float, optional): convergence speed of the bound functions (default: 1e-3)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm
.. Adaptive Gradient Methods with Dynamic Bound of Learning Rate:
https://openreview.net/forum?id=Bkg3g2R9FX
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3,
eps=1e-8, weight_decay=0, amsbound=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= final_lr:
raise ValueError("Invalid final learning rate: {}".format(final_lr))
if not 0.0 <= gamma < 1.0:
raise ValueError("Invalid gamma parameter: {}".format(gamma))
defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps,
weight_decay=weight_decay, amsbound=amsbound)
super(AdaBound, self).__init__(params, defaults)
self.base_lrs = list(map(lambda group: group['lr'], self.param_groups))
def __setstate__(self, state):
super(AdaBound, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsbound', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group, base_lr in zip(self.param_groups, self.base_lrs):
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
amsbound = group['amsbound']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsbound:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsbound:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsbound:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
# Applies bounds on actual learning rate
# lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay
final_lr = group['final_lr'] * group['lr'] / base_lr
lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1))
upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step']))
step_size = torch.full_like(denom, step_size)
step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg)
p.data.add_(-step_size)
return loss

@ -6,7 +6,7 @@ from datetime import datetime
from dataset import Dataset from dataset import Dataset
from models import model_factory, transforms_imagenet_eval, transforms_imagenet_train from models import model_factory, transforms_imagenet_eval, transforms_imagenet_train
from utils import * from utils import *
from optim import nadam from optim import nadam, adabound
import scheduler import scheduler
import torch import torch
@ -166,6 +166,10 @@ def main():
elif args.opt.lower() == 'nadam': elif args.opt.lower() == 'nadam':
optimizer = nadam.Nadam( optimizer = nadam.Nadam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps) model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
elif args.opt.lower() == 'adabound':
optimizer = adabound.AdaBound(
model.parameters(), lr=args.lr / 1000, weight_decay=args.weight_decay, eps=args.opt_eps,
final_lr=args.lr)
elif args.opt.lower() == 'adadelta': elif args.opt.lower() == 'adadelta':
optimizer = optim.Adadelta( optimizer = optim.Adadelta(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps) model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
@ -185,12 +189,12 @@ def main():
lr_scheduler = scheduler.CosineLRScheduler( lr_scheduler = scheduler.CosineLRScheduler(
optimizer, optimizer,
t_initial=args.epochs, t_initial=args.epochs,
t_mul=1.5, t_mul=1.0,
lr_min=1e-5, lr_min=1e-5,
decay_rate=args.decay_rate, decay_rate=args.decay_rate,
warmup_lr_init=1e-4, warmup_lr_init=1e-4,
warmup_t=3, warmup_t=3,
cycle_limit=3, cycle_limit=1,
t_in_epochs=True, t_in_epochs=True,
) )
num_epochs = lr_scheduler.get_cycle_length() + 10 num_epochs = lr_scheduler.get_cycle_length() + 10

Loading…
Cancel
Save