|
|
@ -42,12 +42,14 @@ def _natural_key(string_):
|
|
|
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
|
|
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def list_models(filter='', module='', pretrained=False):
|
|
|
|
def list_models(filter='', module='', pretrained=False, exclude_filters=''):
|
|
|
|
""" Return list of available model names, sorted alphabetically
|
|
|
|
""" Return list of available model names, sorted alphabetically
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
filter (str) - Wildcard filter string that works with fnmatch
|
|
|
|
filter (str) - Wildcard filter string that works with fnmatch
|
|
|
|
module (str) - Limit model selection to a specific sub-module (ie 'gen_efficientnet')
|
|
|
|
module (str) - Limit model selection to a specific sub-module (ie 'gen_efficientnet')
|
|
|
|
|
|
|
|
pretrained (bool) - Include only models with pretrained weights if True
|
|
|
|
|
|
|
|
exclude_filters (str or list[str]) - Wildcard filters to exclude models after including them with filter
|
|
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
Example:
|
|
|
|
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet'
|
|
|
|
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet'
|
|
|
@ -58,7 +60,14 @@ def list_models(filter='', module='', pretrained=False):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
models = _model_entrypoints.keys()
|
|
|
|
models = _model_entrypoints.keys()
|
|
|
|
if filter:
|
|
|
|
if filter:
|
|
|
|
models = fnmatch.filter(models, filter)
|
|
|
|
models = fnmatch.filter(models, filter) # include these models
|
|
|
|
|
|
|
|
if exclude_filters:
|
|
|
|
|
|
|
|
if not isinstance(exclude_filters, list):
|
|
|
|
|
|
|
|
exclude_filters = [exclude_filters]
|
|
|
|
|
|
|
|
for xf in exclude_filters:
|
|
|
|
|
|
|
|
exclude_models = fnmatch.filter(models, xf) # exclude these models
|
|
|
|
|
|
|
|
if len(exclude_models):
|
|
|
|
|
|
|
|
models = set(models).difference(exclude_models)
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
models = _model_has_pretrained.intersection(models)
|
|
|
|
models = _model_has_pretrained.intersection(models)
|
|
|
|
return list(sorted(models, key=_natural_key))
|
|
|
|
return list(sorted(models, key=_natural_key))
|
|
|
|