|
|
|
@ -1430,7 +1430,7 @@ def efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
""" EfficientNet-B1 """
|
|
|
|
|
default_cfg = default_cfgs['efficientnet_b1']
|
|
|
|
|
# NOTE for train, drop_rate should be 0.2
|
|
|
|
|
kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
|
|
|
|
|
#kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
|
channel_multiplier=1.0, depth_multiplier=1.1,
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
@ -1445,7 +1445,7 @@ def efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
|
""" EfficientNet-B2 """
|
|
|
|
|
default_cfg = default_cfgs['efficientnet_b2']
|
|
|
|
|
# NOTE for train, drop_rate should be 0.3
|
|
|
|
|
kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
|
|
|
|
|
#kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
|
|
|
|
|
model = _gen_efficientnet(
|
|
|
|
|
channel_multiplier=1.1, depth_multiplier=1.2,
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|