Add two comments back, fix typo

pull/16/head
Ross Wightman 6 years ago
parent 188aeae8f4
commit 9b0070edc9

@ -1430,7 +1430,7 @@ def efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B1 """ """ EfficientNet-B1 """
default_cfg = default_cfgs['efficientnet_b1'] default_cfg = default_cfgs['efficientnet_b1']
# NOTE for train, drop_rate should be 0.2 # NOTE for train, drop_rate should be 0.2
kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
model = _gen_efficientnet( model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.1, channel_multiplier=1.0, depth_multiplier=1.1,
num_classes=num_classes, in_chans=in_chans, **kwargs) num_classes=num_classes, in_chans=in_chans, **kwargs)
@ -1445,7 +1445,7 @@ def efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B2 """ """ EfficientNet-B2 """
default_cfg = default_cfgs['efficientnet_b2'] default_cfg = default_cfgs['efficientnet_b2']
# NOTE for train, drop_rate should be 0.3 # NOTE for train, drop_rate should be 0.3
kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg #kwargs['drop_connect_rate'] = 0.2 # set when training, TODO add as cmd arg
model = _gen_efficientnet( model = _gen_efficientnet(
channel_multiplier=1.1, depth_multiplier=1.2, channel_multiplier=1.1, depth_multiplier=1.2,
num_classes=num_classes, in_chans=in_chans, **kwargs) num_classes=num_classes, in_chans=in_chans, **kwargs)

@ -334,7 +334,7 @@ def wide_resnet50_2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
@register_model @register_model
def wide_resnet101_2(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def wide_resnet101_2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a Wide ResNet-100-2 model. """Constructs a Wide ResNet-101-2 model.
The model is the same as ResNet except for the bottleneck number of channels The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1 which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same. convolutions is the same.

Loading…
Cancel
Save