|
|
@ -47,17 +47,21 @@ default_cfgs = {
|
|
|
|
# GPU-Efficient (ResNet) weights
|
|
|
|
# GPU-Efficient (ResNet) weights
|
|
|
|
'botnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'botnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'botnet50ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'botnet50ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
'eca_botnext26ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet_h1_c4c5': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet_h1_c4c5': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet26t': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet26t': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet50ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
'halonet50ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
|
|
|
|
'eca_halonext26ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
|
|
|
|
|
|
|
|
|
|
|
'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'lambda_resnet50t': _cfg(url='', min_input_size=(3, 128, 128)),
|
|
|
|
'lambda_resnet50t': _cfg(url='', min_input_size=(3, 128, 128)),
|
|
|
|
|
|
|
|
'eca_lambda_resnext26ts': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
'swinnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'swinnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'swinnet50ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'swinnet50ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
'eca_swinnext26ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
'rednet26t': _cfg(url='', fixed_input_size=False, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'rednet26t': _cfg(url='', fixed_input_size=False, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'rednet50ts': _cfg(url='', fixed_input_size=False, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'rednet50ts': _cfg(url='', fixed_input_size=False, input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
@ -129,6 +133,23 @@ model_cfgs = dict(
|
|
|
|
self_attn_fixed_size=True,
|
|
|
|
self_attn_fixed_size=True,
|
|
|
|
self_attn_kwargs=dict()
|
|
|
|
self_attn_kwargs=dict()
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
eca_botnext26ts=ByoaCfg(
|
|
|
|
|
|
|
|
blocks=(
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=3, c=256, s=1, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=4, c=512, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='self_attn', d=3, c=2048, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
|
|
|
num_features=0,
|
|
|
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
|
|
|
attn_layer='eca',
|
|
|
|
|
|
|
|
self_attn_layer='bottleneck',
|
|
|
|
|
|
|
|
self_attn_fixed_size=True,
|
|
|
|
|
|
|
|
self_attn_kwargs=dict()
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
halonet_h1=ByoaCfg(
|
|
|
|
halonet_h1=ByoaCfg(
|
|
|
|
blocks=(
|
|
|
|
blocks=(
|
|
|
@ -187,6 +208,22 @@ model_cfgs = dict(
|
|
|
|
self_attn_layer='halo',
|
|
|
|
self_attn_layer='halo',
|
|
|
|
self_attn_kwargs=dict(block_size=8, halo_size=2)
|
|
|
|
self_attn_kwargs=dict(block_size=8, halo_size=2)
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
eca_halonext26ts=ByoaCfg(
|
|
|
|
|
|
|
|
blocks=(
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
|
|
|
num_features=0,
|
|
|
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
|
|
|
attn_layer='eca',
|
|
|
|
|
|
|
|
self_attn_layer='halo',
|
|
|
|
|
|
|
|
self_attn_kwargs=dict(block_size=8, halo_size=2) # intended for 256x256 res
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
lambda_resnet26t=ByoaCfg(
|
|
|
|
lambda_resnet26t=ByoaCfg(
|
|
|
|
blocks=(
|
|
|
|
blocks=(
|
|
|
@ -216,6 +253,22 @@ model_cfgs = dict(
|
|
|
|
self_attn_layer='lambda',
|
|
|
|
self_attn_layer='lambda',
|
|
|
|
self_attn_kwargs=dict()
|
|
|
|
self_attn_kwargs=dict()
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
eca_lambda_resnext26ts=ByoaCfg(
|
|
|
|
|
|
|
|
blocks=(
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
|
|
|
num_features=0,
|
|
|
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
|
|
|
attn_layer='eca',
|
|
|
|
|
|
|
|
self_attn_layer='lambda',
|
|
|
|
|
|
|
|
self_attn_kwargs=dict()
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
swinnet26t=ByoaCfg(
|
|
|
|
swinnet26t=ByoaCfg(
|
|
|
|
blocks=(
|
|
|
|
blocks=(
|
|
|
@ -248,6 +301,24 @@ model_cfgs = dict(
|
|
|
|
self_attn_fixed_size=True,
|
|
|
|
self_attn_fixed_size=True,
|
|
|
|
self_attn_kwargs=dict(win_size=8)
|
|
|
|
self_attn_kwargs=dict(win_size=8)
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
eca_swinnext26ts=ByoaCfg(
|
|
|
|
|
|
|
|
blocks=(
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25),
|
|
|
|
|
|
|
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=512, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
ByoaBlocksCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
stem_chs=64,
|
|
|
|
|
|
|
|
stem_type='tiered',
|
|
|
|
|
|
|
|
stem_pool='maxpool',
|
|
|
|
|
|
|
|
num_features=0,
|
|
|
|
|
|
|
|
act_layer='silu',
|
|
|
|
|
|
|
|
attn_layer='eca',
|
|
|
|
|
|
|
|
self_attn_layer='swin',
|
|
|
|
|
|
|
|
self_attn_fixed_size=True,
|
|
|
|
|
|
|
|
self_attn_kwargs=dict(win_size=8)
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rednet26t=ByoaCfg(
|
|
|
|
rednet26t=ByoaCfg(
|
|
|
|
blocks=(
|
|
|
|
blocks=(
|
|
|
@ -454,6 +525,14 @@ def botnet50ts_256(pretrained=False, **kwargs):
|
|
|
|
return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def eca_botnext26ts_256(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" Bottleneck Transformer w/ ResNet26-T backbone. Bottleneck attn in final stage.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
kwargs.setdefault('img_size', 256)
|
|
|
|
|
|
|
|
return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def halonet_h1(pretrained=False, **kwargs):
|
|
|
|
def halonet_h1(pretrained=False, **kwargs):
|
|
|
|
""" HaloNet-H1. Halo attention in all stages as per the paper.
|
|
|
|
""" HaloNet-H1. Halo attention in all stages as per the paper.
|
|
|
@ -484,6 +563,13 @@ def halonet50ts(pretrained=False, **kwargs):
|
|
|
|
return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def eca_halonext26ts(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" HaloNet w/ a ResNet26-t backbone, Hallo attention in final stage
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def lambda_resnet26t(pretrained=False, **kwargs):
|
|
|
|
def lambda_resnet26t(pretrained=False, **kwargs):
|
|
|
|
""" Lambda-ResNet-26T. Lambda layers in one C4 stage and all C5.
|
|
|
|
""" Lambda-ResNet-26T. Lambda layers in one C4 stage and all C5.
|
|
|
@ -498,6 +584,13 @@ def lambda_resnet50t(pretrained=False, **kwargs):
|
|
|
|
return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def eca_lambda_resnext26ts(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" Lambda-ResNet-26T. Lambda layers in one C4 stage and all C5.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
return _create_byoanet('eca_lambda_resnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def swinnet26t_256(pretrained=False, **kwargs):
|
|
|
|
def swinnet26t_256(pretrained=False, **kwargs):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
@ -514,6 +607,14 @@ def swinnet50ts_256(pretrained=False, **kwargs):
|
|
|
|
return _create_byoanet('swinnet50ts_256', 'swinnet50ts', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_byoanet('swinnet50ts_256', 'swinnet50ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def eca_swinnext26ts_256(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
kwargs.setdefault('img_size', 256)
|
|
|
|
|
|
|
|
return _create_byoanet('eca_swinnext26ts_256', 'eca_swinnext26ts', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def rednet26t(pretrained=False, **kwargs):
|
|
|
|
def rednet26t(pretrained=False, **kwargs):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|