|
|
|
@ -29,7 +29,7 @@ def _cfg(url='', **kwargs):
|
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
|
'first_conv': 'layer0.conv1', 'classifier': 'last_linear',
|
|
|
|
|
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
|
|
|
|
**kwargs
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -207,12 +207,11 @@ class MnasNet(nn.Module):
|
|
|
|
|
global_pool='avg', act_fn=F.relu):
|
|
|
|
|
super(MnasNet, self).__init__()
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
|
self.global_pool = global_pool
|
|
|
|
|
self.act_fn = act_fn
|
|
|
|
|
self.depth_multiplier = depth_multiplier
|
|
|
|
|
self.bn_momentum = bn_momentum
|
|
|
|
|
self.bn_eps = bn_eps
|
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
|
self.act_fn = act_fn
|
|
|
|
|
self.num_features = 1280
|
|
|
|
|
|
|
|
|
|
self.conv_stem = nn.Conv2d(in_chans, stem_size, 3, padding=1, stride=2, bias=False)
|
|
|
|
@ -230,7 +229,7 @@ class MnasNet(nn.Module):
|
|
|
|
|
self.conv_head = nn.Conv2d(out_chs, self.num_features, 1, padding=0, stride=1, bias=False)
|
|
|
|
|
self.bn1 = nn.BatchNorm2d(self.num_features, momentum=self.bn_momentum, eps=self.bn_eps)
|
|
|
|
|
|
|
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
|
self.classifier = nn.Linear(self.num_features, self.num_classes)
|
|
|
|
|
|
|
|
|
|
for m in self.modules():
|
|
|
|
@ -251,11 +250,12 @@ class MnasNet(nn.Module):
|
|
|
|
|
return self.classifier
|
|
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
|
#self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
del self.classifier
|
|
|
|
|
if num_classes:
|
|
|
|
|
self.classifier = nn.Linear(self.num_features, num_classes)
|
|
|
|
|
self.classifier = nn.Linear(
|
|
|
|
|
self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
|
else:
|
|
|
|
|
self.classifier = None
|
|
|
|
|
|
|
|
|
@ -282,7 +282,7 @@ class MnasNet(nn.Module):
|
|
|
|
|
def mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
|
|
|
|
|
"""Creates a mnasnet-a1 model.
|
|
|
|
|
Args:
|
|
|
|
|
depth_multiplier: multiplier to number of filters per layer.
|
|
|
|
|
depth_multiplier: multiplier to number of channels per layer.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# defs from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
|
|
|
|
@ -314,7 +314,7 @@ def mnasnet_a1(depth_multiplier, num_classes=1000, **kwargs):
|
|
|
|
|
def mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
|
|
|
|
|
"""Creates a mnasnet-b1 model.
|
|
|
|
|
Args:
|
|
|
|
|
depth_multiplier: multiplier to number of filters per layer.
|
|
|
|
|
depth_multiplier: multiplier to number of channels per layer.
|
|
|
|
|
"""
|
|
|
|
|
# from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
|
|
|
|
|
blocks_defs = [
|
|
|
|
@ -345,7 +345,7 @@ def mnasnet_b1(depth_multiplier, num_classes=1000, **kwargs):
|
|
|
|
|
def mnasnet_small(depth_multiplier, num_classes=1000, **kwargs):
|
|
|
|
|
"""Creates a mnasnet-b1 model.
|
|
|
|
|
Args:
|
|
|
|
|
depth_multiplier: multiplier to number of filters per layer.
|
|
|
|
|
depth_multiplier: multiplier to number of channels per layer.
|
|
|
|
|
"""
|
|
|
|
|
# from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
|
|
|
|
|
blocks_defs = [
|
|
|
|
@ -378,6 +378,8 @@ def mnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_b1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -386,6 +388,8 @@ def mnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_b1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -394,6 +398,8 @@ def mnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_b1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -402,6 +408,8 @@ def mnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_b1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -410,6 +418,8 @@ def semnasnet0_50(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_a1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -418,27 +428,36 @@ def semnasnet0_75(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_a1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def semnasnet1_00(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
""" MNASNet Small, depth multiplier of 1.0. """
|
|
|
|
|
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_a1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def semnasnet1_40(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
""" MNASNet with depth multiplier of 1.3. """
|
|
|
|
|
""" MNASNet A1 (w/ SE), depth multiplier of 1.4. """
|
|
|
|
|
default_cfg = default_cfgs['mnasnet0_50']
|
|
|
|
|
model = mnasnet_a1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mnasnet_small(num_classes, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
|
""" MNASNet Small, depth multiplier of 1.0. """
|
|
|
|
|
default_cfg = default_cfgs['mnasnet_small']
|
|
|
|
|
model = mnasnet_small(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
if pretrained:
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
return model
|
|
|
|
|