Throw in some FBNetV3 code I had lying around, some refactoring of SE reduction channel calcs for all EffNet archs.

more_attn
Ross Wightman 4 years ago
parent 01b9108619
commit 9611458e19

@ -90,7 +90,7 @@ default_cfgs = {
# experimental configs # experimental configs
'resnet51q': _cfg( 'resnet51q': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth',
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8),
test_input_size=(3, 288, 288), crop_pct=1.0), test_input_size=(3, 288, 288), crop_pct=1.0),
'resnet61q': _cfg( 'resnet61q': _cfg(
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'), first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'),

@ -22,18 +22,16 @@ class SqueezeExcite(nn.Module):
se_ratio (float): ratio of squeeze reduction se_ratio (float): ratio of squeeze reduction
act_layer (nn.Module): activation layer of containing block act_layer (nn.Module): activation layer of containing block
gate_fn (Callable): attention gate function gate_fn (Callable): attention gate function
block_in_chs (int): input channels of containing block (for calculating reduction from)
reduce_from_block (bool): calculate reduction from block input channels if True
force_act_layer (nn.Module): override block's activation fn if this is set/bound force_act_layer (nn.Module): override block's activation fn if this is set/bound
divisor (int): make reduction channels divisible by this round_chs_fn (Callable): specify a fn to calculate rounding of reduced chs
""" """
def __init__( def __init__(
self, in_chs, se_ratio=0.25, act_layer=nn.ReLU, gate_fn=sigmoid, self, in_chs, se_ratio=0.25, act_layer=nn.ReLU, gate_fn=sigmoid,
block_in_chs=None, reduce_from_block=True, force_act_layer=None, divisor=1): force_act_layer=None, round_chs_fn=None):
super(SqueezeExcite, self).__init__() super(SqueezeExcite, self).__init__()
reduced_chs = (block_in_chs or in_chs) if reduce_from_block else in_chs round_chs_fn = round_chs_fn or round
reduced_chs = make_divisible(reduced_chs * se_ratio, divisor) reduced_chs = round_chs_fn(in_chs * se_ratio)
act_layer = force_act_layer or act_layer act_layer = force_act_layer or act_layer
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = create_act_layer(act_layer, inplace=True) self.act1 = create_act_layer(act_layer, inplace=True)
@ -168,8 +166,7 @@ class InvertedResidual(nn.Module):
self.act2 = act_layer(inplace=True) self.act2 = act_layer(inplace=True)
# Squeeze-and-excitation # Squeeze-and-excitation
self.se = se_layer( self.se = se_layer(mid_chs, se_ratio=se_ratio, act_layer=act_layer) if has_se else nn.Identity()
mid_chs, se_ratio=se_ratio, act_layer=act_layer, block_in_chs=in_chs) if has_se else nn.Identity()
# Point-wise linear projection # Point-wise linear projection
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
@ -292,8 +289,7 @@ class EdgeResidual(nn.Module):
self.act1 = act_layer(inplace=True) self.act1 = act_layer(inplace=True)
# Squeeze-and-excitation # Squeeze-and-excitation
self.se = SqueezeExcite( self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, act_layer=act_layer) if has_se else nn.Identity()
mid_chs, se_ratio=se_ratio, act_layer=act_layer, block_in_chs=in_chs) if has_se else nn.Identity()
# Point-wise linear projection # Point-wise linear projection
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type)

@ -265,11 +265,12 @@ class EfficientNetBuilder:
https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py
""" """
def __init__(self, output_stride=32, pad_type='', round_chs_fn=round_channels, def __init__(self, output_stride=32, pad_type='', round_chs_fn=round_channels, se_from_exp=False,
act_layer=None, norm_layer=None, se_layer=None, drop_path_rate=0., feature_location=''): act_layer=None, norm_layer=None, se_layer=None, drop_path_rate=0., feature_location=''):
self.output_stride = output_stride self.output_stride = output_stride
self.pad_type = pad_type self.pad_type = pad_type
self.round_chs_fn = round_chs_fn self.round_chs_fn = round_chs_fn
self.se_from_exp = se_from_exp # calculate se channel reduction from expanded (mid) chs
self.act_layer = act_layer self.act_layer = act_layer
self.norm_layer = norm_layer self.norm_layer = norm_layer
self.se_layer = se_layer self.se_layer = se_layer
@ -301,6 +302,8 @@ class EfficientNetBuilder:
ba['norm_layer'] = self.norm_layer ba['norm_layer'] = self.norm_layer
if bt != 'cn': if bt != 'cn':
ba['se_layer'] = self.se_layer ba['se_layer'] = self.se_layer
if not self.se_from_exp and ba['se_ratio']:
ba['se_ratio'] /= ba.get('exp_ratio', 1.0)
ba['drop_path_rate'] = drop_path_rate ba['drop_path_rate'] = drop_path_rate
if bt == 'ir': if bt == 'ir':
@ -418,28 +421,28 @@ def _init_weight_goog(m, n='', fix_group_fanout=True):
if fix_group_fanout: if fix_group_fanout:
fan_out //= m.groups fan_out //= m.groups
init_weight_fn = get_condconv_initializer( init_weight_fn = get_condconv_initializer(
lambda w: w.data.normal_(0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape) lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
init_weight_fn(m.weight) init_weight_fn(m.weight)
if m.bias is not None: if m.bias is not None:
m.bias.data.zero_() nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d): elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
if fix_group_fanout: if fix_group_fanout:
fan_out //= m.groups fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out))
if m.bias is not None: if m.bias is not None:
m.bias.data.zero_() nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d): elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0) nn.init.ones_(m.weight)
m.bias.data.zero_() nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear): elif isinstance(m, nn.Linear):
fan_out = m.weight.size(0) # fan-out fan_out = m.weight.size(0) # fan-out
fan_in = 0 fan_in = 0
if 'routing_fn' in n: if 'routing_fn' in n:
fan_in = m.weight.size(1) fan_in = m.weight.size(1)
init_range = 1.0 / math.sqrt(fan_in + fan_out) init_range = 1.0 / math.sqrt(fan_in + fan_out)
m.weight.data.uniform_(-init_range, init_range) nn.init.uniform_(m.weight, -init_range, init_range)
m.bias.data.zero_() nn.init.zeros_(m.bias)
def efficientnet_init_weights(model: nn.Module, init_fn=None): def efficientnet_init_weights(model: nn.Module, init_fn=None):

@ -40,7 +40,7 @@ default_cfgs = {
} }
_SE_LAYER = partial(SqueezeExcite, gate_fn='hard_sigmoid', divisor=4) _SE_LAYER = partial(SqueezeExcite, gate_fn='hard_sigmoid', round_chs_fn=partial(make_divisible, divisor=4))
class GhostModule(nn.Module): class GhostModule(nn.Module):

@ -4,7 +4,7 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .efficientnet_blocks import SqueezeExcite from .efficientnet_blocks import SqueezeExcite
from .efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args from .efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels
from .helpers import build_model_with_cfg, default_cfg_for_features from .helpers import build_model_with_cfg, default_cfg_for_features
from .layers import get_act_fn from .layers import get_act_fn
from .mobilenetv3 import MobileNetV3, MobileNetV3Features from .mobilenetv3 import MobileNetV3, MobileNetV3Features
@ -40,7 +40,7 @@ def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs):
""" """
num_features = 1280 num_features = 1280
se_layer = partial( se_layer = partial(
SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid'), force_act_layer=nn.ReLU, reduce_from_block=False, divisor=8) SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid'), force_act_layer=nn.ReLU, round_chs_fn=round_channels)
model_kwargs = dict( model_kwargs = dict(
block_args=decode_arch_def(arch_def), block_args=decode_arch_def(arch_def),
num_features=num_features, num_features=num_features,

@ -72,6 +72,10 @@ default_cfgs = {
'tf_mobilenetv3_small_minimal_100': _cfg( 'tf_mobilenetv3_small_minimal_100': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
'fbnetv3_b': _cfg(),
'fbnetv3_d': _cfg(),
'fbnetv3_g': _cfg(),
} }
@ -86,7 +90,7 @@ class MobileNetV3(nn.Module):
""" """
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
pad_type='', act_layer=None, norm_layer=None, se_layer=None, pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True,
round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'): round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'):
super(MobileNetV3, self).__init__() super(MobileNetV3, self).__init__()
act_layer = act_layer or nn.ReLU act_layer = act_layer or nn.ReLU
@ -104,7 +108,7 @@ class MobileNetV3(nn.Module):
# Middle stages (IR/ER/DS Blocks) # Middle stages (IR/ER/DS Blocks)
builder = EfficientNetBuilder( builder = EfficientNetBuilder(
output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp,
act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate) act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate)
self.blocks = nn.Sequential(*builder(stem_size, block_args)) self.blocks = nn.Sequential(*builder(stem_size, block_args))
self.feature_info = builder.features self.feature_info = builder.features
@ -161,8 +165,8 @@ class MobileNetV3Features(nn.Module):
and object detection models. and object detection models.
""" """
def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3,
in_chans=3, stem_size=16, output_stride=32, pad_type='', round_chs_fn=round_channels, stem_size=16, output_stride=32, pad_type='', round_chs_fn=round_channels, se_from_exp=True,
act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.): act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.):
super(MobileNetV3Features, self).__init__() super(MobileNetV3Features, self).__init__()
act_layer = act_layer or nn.ReLU act_layer = act_layer or nn.ReLU
@ -178,7 +182,7 @@ class MobileNetV3Features(nn.Module):
# Middle stages (IR/ER/DS Blocks) # Middle stages (IR/ER/DS Blocks)
builder = EfficientNetBuilder( builder = EfficientNetBuilder(
output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp,
act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer,
drop_path_rate=drop_path_rate, feature_location=feature_location) drop_path_rate=drop_path_rate, feature_location=feature_location)
self.blocks = nn.Sequential(*builder(stem_size, block_args)) self.blocks = nn.Sequential(*builder(stem_size, block_args))
@ -262,7 +266,7 @@ def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kw
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
act_layer=resolve_act_layer(kwargs, 'hard_swish'), act_layer=resolve_act_layer(kwargs, 'hard_swish'),
se_layer=partial(SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid'), reduce_from_block=False), se_layer=partial(SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid')),
**kwargs, **kwargs,
) )
model = _create_mnv3(variant, pretrained, **model_kwargs) model = _create_mnv3(variant, pretrained, **model_kwargs)
@ -351,7 +355,7 @@ def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwarg
['cn_r1_k1_s1_c960'], # hard-swish ['cn_r1_k1_s1_c960'], # hard-swish
] ]
se_layer = partial( se_layer = partial(
SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid'), force_act_layer=nn.ReLU, reduce_from_block=False, divisor=8) SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid'), force_act_layer=nn.ReLU, round_chs_fn=round_channels)
model_kwargs = dict( model_kwargs = dict(
block_args=decode_arch_def(arch_def), block_args=decode_arch_def(arch_def),
num_features=num_features, num_features=num_features,
@ -366,6 +370,86 @@ def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwarg
return model return model
def _gen_fbnetv3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
""" FBNetV3
FIXME untested, this is a preliminary impl of some FBNet-V3 variants.
"""
vl = variant.split('_')[-1]
if vl in ('a', 'b'):
stem_size = 16
arch_def = [
# stage 0, 112x112 in
['ds_r2_k3_s1_e1_c16'],
# stage 1, 112x112 in
['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'],
# stage 2, 56x56 in
['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'],
# stage 3, 28x28 in
['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'],
# stage 4, 14x14in
['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'],
# stage 5, 14x14in
['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c1344'],
]
elif vl == 'd':
stem_size = 24
arch_def = [
# stage 0, 112x112 in
['ds_r2_k3_s1_e1_c16'],
# stage 1, 112x112 in
['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'],
# stage 2, 56x56 in
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'],
# stage 3, 28x28 in
['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'],
# stage 4, 14x14in
['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'],
# stage 5, 14x14in
['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c1440'],
]
elif vl == 'g':
stem_size = 32
arch_def = [
# stage 0, 112x112 in
['ds_r3_k3_s1_e1_c24'],
# stage 1, 112x112 in
['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'],
# stage 2, 56x56 in
['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'],
# stage 3, 28x28 in
['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'],
# stage 4, 14x14in
['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'],
# stage 5, 14x14in
['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c1728'], # hard-swish
]
else:
raise NotImplemented
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95)
se_layer = partial(SqueezeExcite, gate_fn=get_act_fn('hard_sigmoid'), round_chs_fn=round_chs_fn)
act_layer = resolve_act_layer(kwargs, 'hard_swish')
model_kwargs = dict(
block_args=decode_arch_def(arch_def),
num_features=1984,
head_bias=False,
stem_size=stem_size,
round_chs_fn=round_chs_fn,
se_from_exp=False,
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
act_layer=act_layer,
se_layer=se_layer,
**kwargs,
)
model = _create_mnv3(variant, pretrained, **model_kwargs)
return model
@register_model @register_model
def mobilenetv3_large_075(pretrained=False, **kwargs): def mobilenetv3_large_075(pretrained=False, **kwargs):
""" MobileNet V3 """ """ MobileNet V3 """
@ -474,3 +558,24 @@ def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
kwargs['pad_type'] = 'same' kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model return model
@register_model
def fbnetv3_b(pretrained=False, **kwargs):
""" FBNetV3-B """
model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs)
return model
@register_model
def fbnetv3_d(pretrained=False, **kwargs):
""" FBNetV3-D """
model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs)
return model
@register_model
def fbnetv3_g(pretrained=False, **kwargs):
""" FBNetV3-G """
model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs)
return model

Loading…
Cancel
Save