|
|
@ -21,12 +21,10 @@ class EvoNormBatch2d(nn.Module):
|
|
|
|
self.apply_act = apply_act # apply activation (non-linearity)
|
|
|
|
self.apply_act = apply_act # apply activation (non-linearity)
|
|
|
|
self.momentum = momentum
|
|
|
|
self.momentum = momentum
|
|
|
|
self.eps = eps
|
|
|
|
self.eps = eps
|
|
|
|
param_shape = (1, num_features, 1, 1)
|
|
|
|
self.weight = nn.Parameter(torch.ones(num_features), requires_grad=True)
|
|
|
|
self.weight = nn.Parameter(torch.ones(param_shape), requires_grad=True)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(num_features), requires_grad=True)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(param_shape), requires_grad=True)
|
|
|
|
self.v = nn.Parameter(torch.ones(num_features), requires_grad=True) if apply_act else None
|
|
|
|
if apply_act:
|
|
|
|
self.register_buffer('running_var', torch.ones(num_features))
|
|
|
|
self.v = nn.Parameter(torch.ones(param_shape), requires_grad=True)
|
|
|
|
|
|
|
|
self.register_buffer('running_var', torch.ones(1, num_features, 1, 1))
|
|
|
|
|
|
|
|
self.reset_parameters()
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
def reset_parameters(self):
|
|
|
@ -38,20 +36,21 @@ class EvoNormBatch2d(nn.Module):
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
assert x.dim() == 4, 'expected 4D input'
|
|
|
|
assert x.dim() == 4, 'expected 4D input'
|
|
|
|
x_type = x.dtype
|
|
|
|
x_type = x.dtype
|
|
|
|
|
|
|
|
running_var = self.running_var.view(1, -1, 1, 1)
|
|
|
|
if self.training:
|
|
|
|
if self.training:
|
|
|
|
var = x.var(dim=(0, 2, 3), unbiased=False, keepdim=True)
|
|
|
|
var = x.var(dim=(0, 2, 3), unbiased=False, keepdim=True)
|
|
|
|
n = x.numel() / x.shape[1]
|
|
|
|
n = x.numel() / x.shape[1]
|
|
|
|
self.running_var.copy_(
|
|
|
|
running_var = var.detach() * self.momentum * (n / (n - 1)) + running_var * (1 - self.momentum)
|
|
|
|
var.detach() * self.momentum * (n / (n - 1)) + self.running_var * (1 - self.momentum))
|
|
|
|
self.running_var.copy_(running_var.view(self.running_var.shape))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
var = self.running_var
|
|
|
|
var = running_var
|
|
|
|
|
|
|
|
|
|
|
|
if self.apply_act:
|
|
|
|
if self.v is not None:
|
|
|
|
v = self.v.to(dtype=x_type)
|
|
|
|
v = self.v.to(dtype=x_type).reshape(1, -1, 1, 1)
|
|
|
|
d = x * v + (x.var(dim=(2, 3), unbiased=False, keepdim=True) + self.eps).sqrt().to(dtype=x_type)
|
|
|
|
d = x * v + (x.var(dim=(2, 3), unbiased=False, keepdim=True) + self.eps).sqrt().to(dtype=x_type)
|
|
|
|
d = d.max((var + self.eps).sqrt().to(dtype=x_type))
|
|
|
|
d = d.max((var + self.eps).sqrt().to(dtype=x_type))
|
|
|
|
x = x / d
|
|
|
|
x = x / d
|
|
|
|
return x * self.weight + self.bias
|
|
|
|
return x * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EvoNormSample2d(nn.Module):
|
|
|
|
class EvoNormSample2d(nn.Module):
|
|
|
@ -60,11 +59,9 @@ class EvoNormSample2d(nn.Module):
|
|
|
|
self.apply_act = apply_act # apply activation (non-linearity)
|
|
|
|
self.apply_act = apply_act # apply activation (non-linearity)
|
|
|
|
self.groups = groups
|
|
|
|
self.groups = groups
|
|
|
|
self.eps = eps
|
|
|
|
self.eps = eps
|
|
|
|
param_shape = (1, num_features, 1, 1)
|
|
|
|
self.weight = nn.Parameter(torch.ones(num_features), requires_grad=True)
|
|
|
|
self.weight = nn.Parameter(torch.ones(param_shape), requires_grad=True)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(num_features), requires_grad=True)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(param_shape), requires_grad=True)
|
|
|
|
self.v = nn.Parameter(torch.ones(num_features), requires_grad=True) if apply_act else None
|
|
|
|
if apply_act:
|
|
|
|
|
|
|
|
self.v = nn.Parameter(torch.ones(param_shape), requires_grad=True)
|
|
|
|
|
|
|
|
self.reset_parameters()
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
def reset_parameters(self):
|
|
|
@ -77,9 +74,9 @@ class EvoNormSample2d(nn.Module):
|
|
|
|
_assert(x.dim() == 4, 'expected 4D input')
|
|
|
|
_assert(x.dim() == 4, 'expected 4D input')
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
_assert(C % self.groups == 0, '')
|
|
|
|
_assert(C % self.groups == 0, '')
|
|
|
|
if self.apply_act:
|
|
|
|
if self.v is not None:
|
|
|
|
n = x * (x * self.v).sigmoid()
|
|
|
|
n = x * (x * self.v.view(1, -1, 1, 1)).sigmoid()
|
|
|
|
x = x.reshape(B, self.groups, -1)
|
|
|
|
x = x.reshape(B, self.groups, -1)
|
|
|
|
x = n.reshape(B, self.groups, -1) / (x.var(dim=-1, unbiased=False, keepdim=True) + self.eps).sqrt()
|
|
|
|
x = n.reshape(B, self.groups, -1) / (x.var(dim=-1, unbiased=False, keepdim=True) + self.eps).sqrt()
|
|
|
|
x = x.reshape(B, C, H, W)
|
|
|
|
x = x.reshape(B, C, H, W)
|
|
|
|
return x * self.weight + self.bias
|
|
|
|
return x * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1)
|
|
|
|