|
|
@ -1,6 +1,25 @@
|
|
|
|
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
|
|
|
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
|
|
|
|
|
|
|
|
|
|
|
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
|
|
|
|
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
https://github.com/microsoft/unilm/tree/master/beit2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@inproceedings{beit,
|
|
|
|
|
|
|
|
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
|
|
|
|
|
|
|
|
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
|
|
|
|
|
|
|
|
booktitle={International Conference on Learning Representations},
|
|
|
|
|
|
|
|
year={2022},
|
|
|
|
|
|
|
|
url={https://openreview.net/forum?id=p-BhZSz59o4}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@article{beitv2,
|
|
|
|
|
|
|
|
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
|
|
|
|
|
|
|
|
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
|
|
|
|
|
|
|
|
year={2022},
|
|
|
|
|
|
|
|
eprint={2208.06366},
|
|
|
|
|
|
|
|
archivePrefix={arXiv},
|
|
|
|
|
|
|
|
primaryClass={cs.CV}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
At this point only the 1k fine-tuned classification weights and model configs have been added,
|
|
|
|
At this point only the 1k fine-tuned classification weights and model configs have been added,
|
|
|
|
see original source above for pre-training models and procedure.
|
|
|
|
see original source above for pre-training models and procedure.
|
|
|
@ -27,6 +46,7 @@ import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_
|
|
|
|
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_
|
|
|
|
from .registry import register_model
|
|
|
|
from .registry import register_model
|
|
|
@ -69,6 +89,26 @@ default_cfgs = {
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
|
|
|
|
num_classes=21841,
|
|
|
|
num_classes=21841,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'beitv2_base_patch16_224': _cfg(
|
|
|
|
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
'beitv2_base_patch16_224_in22k': _cfg(
|
|
|
|
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth',
|
|
|
|
|
|
|
|
num_classes=21841,
|
|
|
|
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
'beitv2_large_patch16_224': _cfg(
|
|
|
|
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth',
|
|
|
|
|
|
|
|
crop_pct=0.95,
|
|
|
|
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
'beitv2_large_patch16_224_in22k': _cfg(
|
|
|
|
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth',
|
|
|
|
|
|
|
|
num_classes=21841,
|
|
|
|
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -417,3 +457,39 @@ def beit_large_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def beitv2_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
|
|
|
|
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def beitv2_base_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
|
|
|
|
model = _create_beit('beitv2_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def beitv2_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
|
|
|
|
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def beitv2_large_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
|
|
|
|
model = _create_beit('beitv2_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|