|
|
@ -2,10 +2,11 @@ import json
|
|
|
|
import logging
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import os
|
|
|
|
from functools import partial
|
|
|
|
from functools import partial
|
|
|
|
from typing import Union, Optional
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
|
from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX
|
|
|
|
from torch.hub import HASH_REGEX, download_url_to_file, urlparse
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
from torch.hub import get_dir
|
|
|
|
from torch.hub import get_dir
|
|
|
|
except ImportError:
|
|
|
|
except ImportError:
|
|
|
@ -13,8 +14,7 @@ except ImportError:
|
|
|
|
|
|
|
|
|
|
|
|
from timm import __version__
|
|
|
|
from timm import __version__
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
from huggingface_hub import hf_hub_url
|
|
|
|
from huggingface_hub import HfApi, HfFolder, Repository, cached_download, hf_hub_url
|
|
|
|
from huggingface_hub import cached_download
|
|
|
|
|
|
|
|
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
|
|
|
|
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
|
|
|
|
except ImportError:
|
|
|
|
except ImportError:
|
|
|
|
hf_hub_url = None
|
|
|
|
hf_hub_url = None
|
|
|
@ -94,3 +94,77 @@ def load_state_dict_from_hf(model_id: str):
|
|
|
|
cached_file = _download_from_hf(model_id, 'pytorch_model.bin')
|
|
|
|
cached_file = _download_from_hf(model_id, 'pytorch_model.bin')
|
|
|
|
state_dict = torch.load(cached_file, map_location='cpu')
|
|
|
|
state_dict = torch.load(cached_file, map_location='cpu')
|
|
|
|
return state_dict
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_pretrained_for_hf(model, save_directory, **config_kwargs):
|
|
|
|
|
|
|
|
assert has_hf_hub(True)
|
|
|
|
|
|
|
|
save_directory = Path(save_directory)
|
|
|
|
|
|
|
|
save_directory.mkdir(exist_ok=True, parents=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights_path = save_directory / 'pytorch_model.bin'
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), weights_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config_path = save_directory / 'config.json'
|
|
|
|
|
|
|
|
config = model.default_cfg
|
|
|
|
|
|
|
|
config['num_classes'] = config_kwargs.pop('num_classes', model.num_classes)
|
|
|
|
|
|
|
|
config['num_features'] = config_kwargs.pop('num_features', model.num_features)
|
|
|
|
|
|
|
|
config['labels'] = config_kwargs.pop('labels', [f"LABEL_{i}" for i in range(config['num_classes'])])
|
|
|
|
|
|
|
|
config.update(config_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with config_path.open('w') as f:
|
|
|
|
|
|
|
|
json.dump(config, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def push_to_hf_hub(
|
|
|
|
|
|
|
|
model,
|
|
|
|
|
|
|
|
local_dir,
|
|
|
|
|
|
|
|
repo_namespace_or_url=None,
|
|
|
|
|
|
|
|
commit_message='Add model',
|
|
|
|
|
|
|
|
use_auth_token=True,
|
|
|
|
|
|
|
|
git_email=None,
|
|
|
|
|
|
|
|
git_user=None,
|
|
|
|
|
|
|
|
revision=None,
|
|
|
|
|
|
|
|
**config_kwargs
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if repo_namespace_or_url:
|
|
|
|
|
|
|
|
repo_owner, repo_name = repo_namespace_or_url.rstrip('/').split('/')[-2:]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
if isinstance(use_auth_token, str):
|
|
|
|
|
|
|
|
token = use_auth_token
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
token = HfFolder.get_token()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if token is None:
|
|
|
|
|
|
|
|
raise ValueError(
|
|
|
|
|
|
|
|
"You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and "
|
|
|
|
|
|
|
|
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
|
|
|
|
|
|
|
|
"token as the `use_auth_token` argument."
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repo_owner = HfApi().whoami(token)['name']
|
|
|
|
|
|
|
|
repo_name = Path(local_dir).name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repo_url = f'https://huggingface.co/{repo_owner}/{repo_name}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repo = Repository(
|
|
|
|
|
|
|
|
local_dir,
|
|
|
|
|
|
|
|
clone_from=repo_url,
|
|
|
|
|
|
|
|
use_auth_token=use_auth_token,
|
|
|
|
|
|
|
|
git_user=git_user,
|
|
|
|
|
|
|
|
git_email=git_email,
|
|
|
|
|
|
|
|
revision=revision,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Prepare a default model card that includes the necessary tags to enable inference.
|
|
|
|
|
|
|
|
readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_name}'
|
|
|
|
|
|
|
|
with repo.commit(commit_message):
|
|
|
|
|
|
|
|
# Save model weights and config.
|
|
|
|
|
|
|
|
save_pretrained_for_hf(model, repo.local_dir, **config_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Save a model card if it doesn't exist.
|
|
|
|
|
|
|
|
readme_path = Path(repo.local_dir) / 'README.md'
|
|
|
|
|
|
|
|
if not readme_path.exists():
|
|
|
|
|
|
|
|
readme_path.write_text(readme_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return repo.git_remote_url()
|
|
|
|