|
|
@ -6,7 +6,6 @@ from torch import nn as nn
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
|
|
|
|
from .adaptive_avgmax_pool import SelectAdaptivePool2d
|
|
|
|
from .adaptive_avgmax_pool import SelectAdaptivePool2d
|
|
|
|
from .linear import Linear
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_pool(num_features, num_classes, pool_type='avg', use_conv=False):
|
|
|
|
def _create_pool(num_features, num_classes, pool_type='avg', use_conv=False):
|
|
|
@ -26,8 +25,7 @@ def _create_fc(num_features, num_classes, use_conv=False):
|
|
|
|
elif use_conv:
|
|
|
|
elif use_conv:
|
|
|
|
fc = nn.Conv2d(num_features, num_classes, 1, bias=True)
|
|
|
|
fc = nn.Conv2d(num_features, num_classes, 1, bias=True)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
# NOTE: using my Linear wrapper that fixes AMP + torchscript casting issue
|
|
|
|
fc = nn.Linear(num_features, num_classes, bias=True)
|
|
|
|
fc = Linear(num_features, num_classes, bias=True)
|
|
|
|
|
|
|
|
return fc
|
|
|
|
return fc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|