Add more experimental darknet and 'cs2' darknet variants (different cross stage setup, closer to newer YOLO backbones) for train trials.

pull/1327/head
Ross Wightman 3 years ago
parent a050fde5cd
commit 82c311d082

@ -16,6 +16,7 @@ from functools import partial
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, named_apply, MATCH_PREV_GROUP from .helpers import build_model_with_cfg, named_apply, MATCH_PREV_GROUP
@ -46,11 +47,21 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth',
input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.875 # FIXME I trained this at 224x224, not 256 like ref impl input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.875 # FIXME I trained this at 224x224, not 256 like ref impl
), ),
'cspresnext50_iabn': _cfg(url=''),
'cspdarknet53': _cfg( 'cspdarknet53': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'),
'cspdarknet53_iabn': _cfg(url=''),
'darknet17': _cfg(url=''),
'darknet21': _cfg(url=''),
'darknet53': _cfg(url=''), 'darknet53': _cfg(url=''),
'cs2darknet_m': _cfg(
url=''),
'cs2darknet_l': _cfg(
url=''),
'cs2darknet_f_m': _cfg(
url=''),
'cs2darknet_f_l': _cfg(
url=''),
} }
@ -116,6 +127,37 @@ model_cfgs = dict(
down_growth=True, down_growth=True,
) )
), ),
darknet17=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1,) * 5,
stride=(2,) * 5,
bottle_ratio=(0.5,) * 5,
block_ratio=(1.,) * 5,
)
),
darknet21=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1, 1, 1, 2, 2),
stride=(2,) * 5,
bottle_ratio=(0.5,) * 5,
block_ratio=(1.,) * 5,
)
),
sedarknet21=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1, 1, 1, 2, 2),
stride=(2,) * 5,
bottle_ratio=(0.5,) * 5,
block_ratio=(1.,) * 5,
attn_layer=('se',) * 5,
)
),
darknet53=dict( darknet53=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''), stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict( stage=dict(
@ -125,13 +167,81 @@ model_cfgs = dict(
bottle_ratio=(0.5,) * 5, bottle_ratio=(0.5,) * 5,
block_ratio=(1.,) * 5, block_ratio=(1.,) * 5,
) )
),
darknetaa53=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1, 2, 8, 8, 4),
stride=(2,) * 5,
bottle_ratio=(0.5,) * 5,
block_ratio=(1.,) * 5,
avg_down=True,
),
),
cs2darknet_m=dict(
stem=dict(out_chs=(24, 48), kernel_size=3, stride=2, pool=''),
stage=dict(
out_chs=(96, 192, 384, 768),
depth=(2, 4, 6, 2),
stride=(2,) * 4,
bottle_ratio=(1.,) * 4,
block_ratio=(0.5,) * 4,
avg_down=False,
),
),
cs2darknet_f_m=dict(
stem=dict(out_chs=48, kernel_size=6, stride=2, padding=2, pool=''),
stage=dict(
out_chs=(96, 192, 384, 768),
depth=(2, 4, 6, 2),
stride=(2,) * 4,
bottle_ratio=(1.,) * 4,
block_ratio=(0.5,) * 4,
avg_down=False,
),
),
cs2darknet_l=dict(
stem=dict(out_chs=(32, 64), kernel_size=3, stride=2, pool=''),
stage=dict(
out_chs=(128, 256, 512, 1024),
depth=(3, 6, 9, 3),
stride=(2,) * 4,
bottle_ratio=(1.,) * 4,
block_ratio=(0.5,) * 4,
avg_down=False,
),
),
cs2darknet_f_l=dict(
stem=dict(out_chs=64, kernel_size=6, stride=2, padding=2, pool=''),
stage=dict(
out_chs=(128, 256, 512, 1024),
depth=(3, 6, 9, 3),
stride=(2,) * 4,
bottle_ratio=(1.,) * 4,
block_ratio=(0.5,) * 4,
avg_down=False,
),
) )
) )
def create_stem( def create_stem(
in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='', in_chans=3,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None): out_chs=32,
kernel_size=3,
stride=2,
pool='',
padding='',
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
aa_layer=None
):
stem = nn.Sequential() stem = nn.Sequential()
if not isinstance(out_chs, (tuple, list)): if not isinstance(out_chs, (tuple, list)):
out_chs = [out_chs] out_chs = [out_chs]
@ -140,8 +250,12 @@ def create_stem(
for i, out_c in enumerate(out_chs): for i, out_c in enumerate(out_chs):
conv_name = f'conv{i + 1}' conv_name = f'conv{i + 1}'
stem.add_module(conv_name, ConvNormAct( stem.add_module(conv_name, ConvNormAct(
in_c, out_c, kernel_size, stride=stride if i == 0 else 1, in_c, out_c, kernel_size,
act_layer=act_layer, norm_layer=norm_layer)) stride=stride if i == 0 else 1,
padding=padding if i == 0 else '',
act_layer=act_layer,
norm_layer=norm_layer
))
in_c = out_c in_c = out_c
last_conv = conv_name last_conv = conv_name
if pool: if pool:
@ -158,9 +272,20 @@ class ResBottleneck(nn.Module):
""" """
def __init__( def __init__(
self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1, self,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False, in_chs,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): out_chs,
dilation=1,
bottle_ratio=0.25,
groups=1,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_last=False,
attn_layer=None,
aa_layer=None,
drop_block=None,
drop_path=None
):
super(ResBottleneck, self).__init__() super(ResBottleneck, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio)) mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
@ -173,7 +298,7 @@ class ResBottleneck(nn.Module):
self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs)
self.attn3 = create_attn(attn_layer, channels=out_chs) if attn_last else None self.attn3 = create_attn(attn_layer, channels=out_chs) if attn_last else None
self.drop_path = drop_path self.drop_path = drop_path
self.act3 = act_layer(inplace=True) self.act3 = act_layer()
def zero_init_last(self): def zero_init_last(self):
nn.init.zeros_(self.conv3.bn.weight) nn.init.zeros_(self.conv3.bn.weight)
@ -201,9 +326,19 @@ class DarkBlock(nn.Module):
""" """
def __init__( def __init__(
self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, self,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, in_chs,
drop_block=None, drop_path=None): out_chs,
dilation=1,
bottle_ratio=0.5,
groups=1,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_layer=None,
aa_layer=None,
drop_block=None,
drop_path=None
):
super(DarkBlock, self).__init__() super(DarkBlock, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio)) mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
@ -211,7 +346,7 @@ class DarkBlock(nn.Module):
self.conv2 = ConvNormActAa( self.conv2 = ConvNormActAa(
mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups,
aa_layer=aa_layer, drop_layer=drop_block, **ckwargs) aa_layer=aa_layer, drop_layer=drop_block, **ckwargs)
self.attn = create_attn(attn_layer, channels=out_chs) self.attn = create_attn(attn_layer, channels=out_chs, act_layer=act_layer)
self.drop_path = drop_path self.drop_path = drop_path
def zero_init_last(self): def zero_init_last(self):
@ -232,23 +367,44 @@ class DarkBlock(nn.Module):
class CrossStage(nn.Module): class CrossStage(nn.Module):
"""Cross Stage.""" """Cross Stage."""
def __init__( def __init__(
self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., exp_ratio=1., self,
groups=1, first_dilation=None, down_growth=False, cross_linear=False, block_dpr=None, in_chs,
block_fn=ResBottleneck, **block_kwargs): out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
exp_ratio=1.,
groups=1,
first_dilation=None,
avg_down=False,
down_growth=False,
cross_linear=False,
block_dpr=None,
block_fn=ResBottleneck,
**block_kwargs
):
super(CrossStage, self).__init__() super(CrossStage, self).__init__()
first_dilation = first_dilation or dilation first_dilation = first_dilation or dilation
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
exp_chs = int(round(out_chs * exp_ratio)) self.exp_chs = exp_chs = int(round(out_chs * exp_ratio))
block_out_chs = int(round(out_chs * block_ratio)) block_out_chs = int(round(out_chs * block_ratio))
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
if stride != 1 or first_dilation != dilation: if stride != 1 or first_dilation != dilation:
self.conv_down = ConvNormActAa( if avg_down:
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, self.conv_down = nn.Sequential(
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs) nn.AvgPool2d(3, 2, 1) if stride == 2 else nn.Identity(), # FIXME dilation handling
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
)
else:
self.conv_down = ConvNormActAa(
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
prev_chs = down_chs prev_chs = down_chs
else: else:
self.conv_down = None self.conv_down = nn.Identity()
prev_chs = in_chs prev_chs = in_chs
# FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also, # FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also,
@ -269,30 +425,115 @@ class CrossStage(nn.Module):
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
def forward(self, x): def forward(self, x):
if self.conv_down is not None: x = self.conv_down(x)
x = self.conv_down(x)
x = self.conv_exp(x) x = self.conv_exp(x)
split = x.shape[1] // 2 xs, xb = x.split(self.exp_chs // 2, dim=1)
xs, xb = x[:, :split], x[:, split:]
xb = self.blocks(xb) xb = self.blocks(xb)
xb = self.conv_transition_b(xb).contiguous() xb = self.conv_transition_b(xb).contiguous()
out = self.conv_transition(torch.cat([xs, xb], dim=1)) out = self.conv_transition(torch.cat([xs, xb], dim=1))
return out return out
class CrossStage2(nn.Module):
"""Cross Stage v2.
Similar to CrossStage, but with one transition conv for the concat output.
"""
def __init__(
self,
in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
exp_ratio=1.,
groups=1,
first_dilation=None,
avg_down=False,
down_growth=False,
cross_linear=False,
block_dpr=None,
block_fn=ResBottleneck,
**block_kwargs
):
super(CrossStage2, self).__init__()
first_dilation = first_dilation or dilation
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
self.exp_chs = exp_chs = int(round(out_chs * exp_ratio))
block_out_chs = int(round(out_chs * block_ratio))
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
if stride != 1 or first_dilation != dilation:
if avg_down:
self.conv_down = nn.Sequential(
nn.AvgPool2d(3, 2, 1) if stride == 2 else nn.Identity(), # FIXME dilation handling
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
)
else:
self.conv_down = ConvNormActAa(
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
prev_chs = down_chs
else:
self.conv_down = None
prev_chs = in_chs
# expansion conv
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
prev_chs = exp_chs // 2 # expanded output is split in 2 for blocks and cross stage
self.blocks = nn.Sequential()
for i in range(depth):
drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None
self.blocks.add_module(str(i), block_fn(
prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs))
prev_chs = block_out_chs
# transition convs
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
def forward(self, x):
x = self.conv_down(x)
x = self.conv_exp(x)
x1, x2 = x.split(self.exp_chs // 2, dim=1)
x1 = self.blocks(x1)
out = self.conv_transition(torch.cat([x1, x2], dim=1))
return out
class DarkStage(nn.Module): class DarkStage(nn.Module):
"""DarkNet stage.""" """DarkNet stage."""
def __init__( def __init__(
self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., groups=1, self,
first_dilation=None, block_fn=ResBottleneck, block_dpr=None, **block_kwargs): in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
groups=1,
first_dilation=None,
avg_down=False,
block_fn=ResBottleneck,
block_dpr=None,
**block_kwargs
):
super(DarkStage, self).__init__() super(DarkStage, self).__init__()
first_dilation = first_dilation or dilation first_dilation = first_dilation or dilation
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
self.conv_down = ConvNormActAa( if avg_down:
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, self.conv_down = nn.Sequential(
act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'), nn.AvgPool2d(3, 2, 1) if stride == 2 else nn.Identity(), # FIXME dilation handling
aa_layer=block_kwargs.get('aa_layer', None)) ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
)
else:
self.conv_down = ConvNormActAa(
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
prev_chs = out_chs prev_chs = out_chs
block_out_chs = int(round(out_chs * block_ratio)) block_out_chs = int(round(out_chs * block_ratio))
@ -318,6 +559,8 @@ def _cfg_to_stage_args(cfg, curr_stride=2, output_stride=32, drop_path_rate=0.):
cfg['down_growth'] = (cfg['down_growth'],) * num_stages cfg['down_growth'] = (cfg['down_growth'],) * num_stages
if 'cross_linear' in cfg and not isinstance(cfg['cross_linear'], (list, tuple)): if 'cross_linear' in cfg and not isinstance(cfg['cross_linear'], (list, tuple)):
cfg['cross_linear'] = (cfg['cross_linear'],) * num_stages cfg['cross_linear'] = (cfg['cross_linear'],) * num_stages
if 'avg_down' in cfg and not isinstance(cfg['avg_down'], (list, tuple)):
cfg['avg_down'] = (cfg['avg_down'],) * num_stages
cfg['block_dpr'] = [None] * num_stages if not drop_path_rate else \ cfg['block_dpr'] = [None] * num_stages if not drop_path_rate else \
[x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg['depth'])).split(cfg['depth'])] [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg['depth'])).split(cfg['depth'])]
stage_strides = [] stage_strides = []
@ -352,9 +595,20 @@ class CspNet(nn.Module):
""" """
def __init__( def __init__(
self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., self,
act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_path_rate=0., cfg,
zero_init_last=True, stage_fn=CrossStage, block_fn=ResBottleneck): in_chans=3,
num_classes=1000,
output_stride=32,
global_pool='avg',
act_layer=nn.LeakyReLU,
norm_layer=nn.BatchNorm2d,
aa_layer=None,
drop_rate=0.,
drop_path_rate=0.,
zero_init_last=True,
stage_fn=CrossStage,
block_fn=ResBottleneck):
super().__init__() super().__init__()
self.num_classes = num_classes self.num_classes = num_classes
self.drop_rate = drop_rate self.drop_rate = drop_rate
@ -427,23 +681,22 @@ class CspNet(nn.Module):
def _init_weights(module, name, zero_init_last=False): def _init_weights(module, name, zero_init_last=False):
if isinstance(module, nn.Conv2d): if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(module, nn.BatchNorm2d): if module.bias is not None:
nn.init.ones_(module.weight) nn.init.zeros_(module.bias)
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear): elif isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.01) nn.init.normal_(module.weight, mean=0.0, std=0.01)
nn.init.zeros_(module.bias) if module.bias is not None:
nn.init.zeros_(module.bias)
elif zero_init_last and hasattr(module, 'zero_init_last'): elif zero_init_last and hasattr(module, 'zero_init_last'):
module.zero_init_last() module.zero_init_last()
def _create_cspnet(variant, pretrained=False, **kwargs): def _create_cspnet(variant, pretrained=False, **kwargs):
cfg_variant = variant.split('_')[0]
# NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5] # NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5]
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5) if 'darknet' in variant else (0, 1, 2, 3, 4)) out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5) if 'darknet' in variant else (0, 1, 2, 3, 4))
return build_model_with_cfg( return build_model_with_cfg(
CspNet, variant, pretrained, CspNet, variant, pretrained,
model_cfg=model_cfgs[cfg_variant], model_cfg=model_cfgs[variant],
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs) **kwargs)
@ -469,22 +722,55 @@ def cspresnext50(pretrained=False, **kwargs):
@register_model @register_model
def cspresnext50_iabn(pretrained=False, **kwargs): def cspdarknet53(pretrained=False, **kwargs):
norm_layer = get_norm_act_layer('iabn', act_layer='leaky_relu') return _create_cspnet('cspdarknet53', pretrained=pretrained, block_fn=DarkBlock, **kwargs)
return _create_cspnet('cspresnext50_iabn', pretrained=pretrained, norm_layer=norm_layer, **kwargs)
@register_model @register_model
def cspdarknet53(pretrained=False, **kwargs): def darknet17(pretrained=False, **kwargs):
return _create_cspnet('cspdarknet53', pretrained=pretrained, block_fn=DarkBlock, **kwargs) return _create_cspnet('darknet17', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)
@register_model @register_model
def cspdarknet53_iabn(pretrained=False, **kwargs): def darknet21(pretrained=False, **kwargs):
norm_layer = get_norm_act_layer('iabn', act_layer='leaky_relu') return _create_cspnet('darknet21', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)
return _create_cspnet('cspdarknet53_iabn', pretrained=pretrained, block_fn=DarkBlock, norm_layer=norm_layer, **kwargs)
@register_model
def sedarknet21(pretrained=False, **kwargs):
return _create_cspnet('sedarknet21', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)
@register_model @register_model
def darknet53(pretrained=False, **kwargs): def darknet53(pretrained=False, **kwargs):
return _create_cspnet('darknet53', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs) return _create_cspnet('darknet53', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)
@register_model
def darknetaa53(pretrained=False, **kwargs):
return _create_cspnet(
'darknetaa53', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)
@register_model
def cs2darknet_m(pretrained=False, **kwargs):
return _create_cspnet(
'cs2darknet_m', pretrained=pretrained, block_fn=DarkBlock, stage_fn=CrossStage2, act_layer='silu', **kwargs)
@register_model
def cs2darknet_l(pretrained=False, **kwargs):
return _create_cspnet(
'cs2darknet_l', pretrained=pretrained, block_fn=DarkBlock, stage_fn=CrossStage2, act_layer='silu', **kwargs)
@register_model
def cs2darknet_f_m(pretrained=False, **kwargs):
return _create_cspnet(
'cs2darknet_f_m', pretrained=pretrained, block_fn=DarkBlock, stage_fn=CrossStage2, act_layer='silu', **kwargs)
@register_model
def cs2darknet_f_l(pretrained=False, **kwargs):
return _create_cspnet(
'cs2darknet_f_l', pretrained=pretrained, block_fn=DarkBlock, stage_fn=CrossStage2, act_layer='silu', **kwargs)

@ -2,6 +2,7 @@
Hacked together by / Copyright 2020 Ross Wightman Hacked together by / Copyright 2020 Ross Wightman
""" """
import functools
from torch import nn as nn from torch import nn as nn
from .create_conv2d import create_conv2d from .create_conv2d import create_conv2d
@ -40,12 +41,26 @@ class ConvNormAct(nn.Module):
ConvBnAct = ConvNormAct ConvBnAct = ConvNormAct
def create_aa(aa_layer, channels, stride=2, enable=True):
if not aa_layer or not enable:
return nn.Identity()
if isinstance(aa_layer, functools.partial):
if issubclass(aa_layer.func, nn.AvgPool2d):
return aa_layer()
else:
return aa_layer(channels)
elif issubclass(aa_layer, nn.AvgPool2d):
return aa_layer(stride)
else:
return aa_layer(channels=channels, stride=stride)
class ConvNormActAa(nn.Module): class ConvNormActAa(nn.Module):
def __init__( def __init__(
self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1,
bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, aa_layer=None, drop_layer=None): bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, aa_layer=None, drop_layer=None):
super(ConvNormActAa, self).__init__() super(ConvNormActAa, self).__init__()
use_aa = aa_layer is not None use_aa = aa_layer is not None and stride == 2
self.conv = create_conv2d( self.conv = create_conv2d(
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, in_channels, out_channels, kernel_size, stride=1 if use_aa else stride,
@ -56,7 +71,7 @@ class ConvNormActAa(nn.Module):
# NOTE for backwards (weight) compatibility, norm layer name remains `.bn` # NOTE for backwards (weight) compatibility, norm layer name remains `.bn`
norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {}
self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs)
self.aa = aa_layer(channels=out_channels) if stride == 2 and use_aa else nn.Identity() self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa)
@property @property
def in_channels(self): def in_channels(self):

Loading…
Cancel
Save