Better handling of crossvit for tests / forward_features, fix torchscript regression in my changes

pull/821/head
Ross Wightman 3 years ago
parent 702982d8af
commit 7ab2491ab7

@ -188,25 +188,22 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
input_tensor = torch.randn((batch_size, *input_size)) input_tensor = torch.randn((batch_size, *input_size))
# test forward_features (always unpooled)
if 'crossvit' not in model_name:
# FIXME remove crossvit exception
outputs = model.forward_features(input_tensor) outputs = model.forward_features(input_tensor)
if isinstance(outputs, tuple): if isinstance(outputs, (tuple, list)):
outputs = outputs[0] outputs = outputs[0]
assert outputs.shape[1] == model.num_features assert outputs.shape[1] == model.num_features
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
model.reset_classifier(0) model.reset_classifier(0)
outputs = model.forward(input_tensor) outputs = model.forward(input_tensor)
if isinstance(outputs, tuple): if isinstance(outputs, (tuple, list)):
outputs = outputs[0] outputs = outputs[0]
assert len(outputs.shape) == 2 assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features assert outputs.shape[1] == model.num_features
model = create_model(model_name, pretrained=False, num_classes=0).eval() model = create_model(model_name, pretrained=False, num_classes=0).eval()
outputs = model.forward(input_tensor) outputs = model.forward(input_tensor)
if isinstance(outputs, tuple): if isinstance(outputs, (tuple, list)):
outputs = outputs[0] outputs = outputs[0]
assert len(outputs.shape) == 2 assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features assert outputs.shape[1] == model.num_features

@ -268,12 +268,9 @@ class CrossViT(nn.Module):
super().__init__() super().__init__()
self.num_classes = num_classes self.num_classes = num_classes
if not isinstance(img_size, (tuple, list)): self.img_size = to_2tuple(img_size)
img_size = to_2tuple(img_size)
self.img_size = img_size
if not isinstance(img_scale, (tuple, list)):
img_scale = to_2tuple(img_scale) img_scale = to_2tuple(img_scale)
self.img_size_scaled = [tuple([int(sj * si) for sj in img_size]) for si in img_scale] self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale]
num_patches = _compute_num_patches(self.img_size_scaled, patch_size) num_patches = _compute_num_patches(self.img_size_scaled, patch_size)
self.num_branches = len(patch_size) self.num_branches = len(patch_size)
self.embed_dim = embed_dim self.embed_dim = embed_dim
@ -346,7 +343,7 @@ class CrossViT(nn.Module):
xs = [] xs = []
for i, patch_embed in enumerate(self.patch_embed): for i, patch_embed in enumerate(self.patch_embed):
ss = self.img_size_scaled[i] ss = self.img_size_scaled[i]
x_ = torch.nn.functional.interpolate(x, size=ss, mode='bicubic') if H != ss[0] else x x_ = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False) if H != ss[0] else x
tmp = patch_embed(x_) tmp = patch_embed(x_)
cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script
cls_tokens = cls_tokens.expand(B, -1, -1) cls_tokens = cls_tokens.expand(B, -1, -1)
@ -361,15 +358,12 @@ class CrossViT(nn.Module):
# NOTE: was before branch token section, move to here to assure all branch token are before layer norm # NOTE: was before branch token section, move to here to assure all branch token are before layer norm
xs = [norm(xs[i]) for i, norm in enumerate(self.norm)] xs = [norm(xs[i]) for i, norm in enumerate(self.norm)]
return tuple([x[:, 0] for x in xs]) return [x[:, 0] for x in xs]
def forward(self, x): def forward(self, x):
xs = self.forward_features(x) xs = self.forward_features(x)
ce_logits = [head(xs[i]) for i, head in enumerate(self.head)] ce_logits = [head(xs[i]) for i, head in enumerate(self.head)]
if isinstance(self.head[0], nn.Identity): if not isinstance(self.head[0], nn.Identity):
# FIXME to pass current passthrough features tests, could use better approach
ce_logits = tuple(ce_logits)
else:
ce_logits = torch.mean(torch.stack(ce_logits, dim=0), dim=0) ce_logits = torch.mean(torch.stack(ce_logits, dim=0), dim=0)
return ce_logits return ce_logits

Loading…
Cancel
Save