commit
7995295968
@ -0,0 +1,39 @@
|
||||
name: Autosquash
|
||||
on:
|
||||
check_run:
|
||||
types:
|
||||
# Check runs completing successfully can unblock the
|
||||
# corresponding pull requests and make them mergeable.
|
||||
- completed
|
||||
pull_request:
|
||||
types:
|
||||
# A closed pull request makes the checks on the other
|
||||
# pull request on the same base outdated.
|
||||
- closed
|
||||
# Adding the autosquash label to a pull request can
|
||||
# trigger an update or a merge.
|
||||
- labeled
|
||||
pull_request_review:
|
||||
types:
|
||||
# Review approvals can unblock the pull request and
|
||||
# make it mergeable.
|
||||
- submitted
|
||||
# Success statuses can unblock the corresponding
|
||||
# pull requests and make them mergeable.
|
||||
status: {}
|
||||
|
||||
jobs:
|
||||
autosquash:
|
||||
name: Autosquash
|
||||
runs-on: ubuntu-18.04
|
||||
steps:
|
||||
- uses: tibdex/autosquash@v2
|
||||
with:
|
||||
# We can't use the built-in secrets.GITHUB_TOKEN yet because of this limitation:
|
||||
# https://github.community/t5/GitHub-Actions/Triggering-a-new-workflow-from-another-workflow/td-p/31676
|
||||
# In the meantime, use a token granting write access on the repo:
|
||||
# - a GitHub App token
|
||||
# See https://github.com/marketplace/actions/github-app-token.
|
||||
# - a personal access token
|
||||
# See https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line.
|
||||
github_token: ${{ secrets.AUTOSQUASH_TOKEN }}
|
@ -0,0 +1,107 @@
|
||||
"""
|
||||
AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py
|
||||
|
||||
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217
|
||||
Code: https://github.com/clovaai/AdamP
|
||||
|
||||
Copyright (c) 2020-present NAVER Corp.
|
||||
MIT license
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim.optimizer import Optimizer, required
|
||||
import math
|
||||
|
||||
class AdamP(Optimizer):
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
||||
weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False):
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
|
||||
delta=delta, wd_ratio=wd_ratio, nesterov=nesterov)
|
||||
super(AdamP, self).__init__(params, defaults)
|
||||
|
||||
def _channel_view(self, x):
|
||||
return x.view(x.size(0), -1)
|
||||
|
||||
def _layer_view(self, x):
|
||||
return x.view(1, -1)
|
||||
|
||||
def _cosine_similarity(self, x, y, eps, view_func):
|
||||
x = view_func(x)
|
||||
y = view_func(y)
|
||||
|
||||
x_norm = x.norm(dim=1).add_(eps)
|
||||
y_norm = y.norm(dim=1).add_(eps)
|
||||
dot = (x * y).sum(dim=1)
|
||||
|
||||
return dot.abs() / x_norm / y_norm
|
||||
|
||||
def _projection(self, p, grad, perturb, delta, wd_ratio, eps):
|
||||
wd = 1
|
||||
expand_size = [-1] + [1] * (len(p.shape) - 1)
|
||||
for view_func in [self._channel_view, self._layer_view]:
|
||||
|
||||
cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func)
|
||||
|
||||
if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)):
|
||||
p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps)
|
||||
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size)
|
||||
wd = wd_ratio
|
||||
|
||||
return perturb, wd
|
||||
|
||||
return perturb, wd
|
||||
|
||||
def step(self, closure=None):
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
grad = p.grad.data
|
||||
beta1, beta2 = group['betas']
|
||||
nesterov = group['nesterov']
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
state['exp_avg'] = torch.zeros_like(p.data)
|
||||
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
|
||||
# Adam
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
|
||||
state['step'] += 1
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
|
||||
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
step_size = group['lr'] / bias_correction1
|
||||
|
||||
if nesterov:
|
||||
perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom
|
||||
else:
|
||||
perturb = exp_avg / denom
|
||||
|
||||
# Projection
|
||||
wd_ratio = 1
|
||||
if len(p.shape) > 1:
|
||||
perturb, wd_ratio = self._projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps'])
|
||||
|
||||
# Weight decay
|
||||
if group['weight_decay'] > 0:
|
||||
p.data.mul_(1 - group['lr'] * group['weight_decay'] * wd_ratio)
|
||||
|
||||
# Step
|
||||
p.data.add_(-step_size, perturb)
|
||||
|
||||
return loss
|
@ -0,0 +1,96 @@
|
||||
"""
|
||||
SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py
|
||||
|
||||
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217
|
||||
Code: https://github.com/clovaai/AdamP
|
||||
|
||||
Copyright (c) 2020-present NAVER Corp.
|
||||
MIT license
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim.optimizer import Optimizer, required
|
||||
import math
|
||||
|
||||
class SGDP(Optimizer):
|
||||
def __init__(self, params, lr=required, momentum=0, dampening=0,
|
||||
weight_decay=0, nesterov=False, eps=1e-8, delta=0.1, wd_ratio=0.1):
|
||||
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay,
|
||||
nesterov=nesterov, eps=eps, delta=delta, wd_ratio=wd_ratio)
|
||||
super(SGDP, self).__init__(params, defaults)
|
||||
|
||||
def _channel_view(self, x):
|
||||
return x.view(x.size(0), -1)
|
||||
|
||||
def _layer_view(self, x):
|
||||
return x.view(1, -1)
|
||||
|
||||
def _cosine_similarity(self, x, y, eps, view_func):
|
||||
x = view_func(x)
|
||||
y = view_func(y)
|
||||
|
||||
x_norm = x.norm(dim=1).add_(eps)
|
||||
y_norm = y.norm(dim=1).add_(eps)
|
||||
dot = (x * y).sum(dim=1)
|
||||
|
||||
return dot.abs() / x_norm / y_norm
|
||||
|
||||
def _projection(self, p, grad, perturb, delta, wd_ratio, eps):
|
||||
wd = 1
|
||||
expand_size = [-1] + [1] * (len(p.shape) - 1)
|
||||
for view_func in [self._channel_view, self._layer_view]:
|
||||
|
||||
cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func)
|
||||
|
||||
if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)):
|
||||
p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps)
|
||||
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size)
|
||||
wd = wd_ratio
|
||||
|
||||
return perturb, wd
|
||||
|
||||
return perturb, wd
|
||||
|
||||
def step(self, closure=None):
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
weight_decay = group['weight_decay']
|
||||
momentum = group['momentum']
|
||||
dampening = group['dampening']
|
||||
nesterov = group['nesterov']
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['momentum'] = torch.zeros_like(p.data)
|
||||
|
||||
# SGD
|
||||
buf = state['momentum']
|
||||
buf.mul_(momentum).add_(1 - dampening, grad)
|
||||
if nesterov:
|
||||
d_p = grad + momentum * buf
|
||||
else:
|
||||
d_p = buf
|
||||
|
||||
# Projection
|
||||
wd_ratio = 1
|
||||
if len(p.shape) > 1:
|
||||
d_p, wd_ratio = self._projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps'])
|
||||
|
||||
# Weight decay
|
||||
if weight_decay != 0:
|
||||
p.data.mul_(1 - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum))
|
||||
|
||||
# Step
|
||||
p.data.add_(-group['lr'], d_p)
|
||||
|
||||
return loss
|
Loading…
Reference in new issue