Add baseline resnet26t @ 256x256 weights. Add 33ts variant of halonet with at least one halo in stage 2,3,4

pull/821/head
Ross Wightman 3 years ago
parent 484e61648d
commit 76881d207b

@ -45,6 +45,7 @@ default_cfgs = {
'halonet26t': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_256-9b4bf0b3.pth',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'sehalonet33ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'halonet50ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'eca_halonext26ts': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_256-1e55880b.pth',
@ -131,6 +132,22 @@ model_cfgs = dict(
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=2, dim_head=16)
),
sehalonet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
act_layer='silu',
num_features=1280,
attn_layer='se',
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=3)
),
halonet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
@ -227,6 +244,13 @@ def halonet26t(pretrained=False, **kwargs):
return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs)
@register_model
def sehalonet33ts(pretrained=False, **kwargs):
""" HaloNet w/ a ResNet26-t backbone. Halo attention in final two stages
"""
return _create_byoanet('sehalonet33ts', pretrained=pretrained, **kwargs)
@register_model
def halonet50ts(pretrained=False, **kwargs):
""" HaloNet w/ a ResNet50-t backbone, silu act. Halo attention in final two stages

@ -50,7 +50,7 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth',
interpolation='bicubic', first_conv='conv1.0'),
'resnet26t': _cfg(
url='',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet26t_256_ra2-6f6fa748.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8)),
'resnet50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth',

Loading…
Cancel
Save