Allow act_layer switch for xcit, fix in_chans for some variants

pull/771/head
Ross Wightman 3 years ago
parent d3255adf8e
commit 748ab852ca

@ -141,7 +141,7 @@ def conv3x3(in_planes, out_planes, stride=1):
class ConvPatchEmbed(nn.Module): class ConvPatchEmbed(nn.Module):
"""Image to Patch Embedding using multiple convolutional layers""" """Image to Patch Embedding using multiple convolutional layers"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, act_layer=nn.GELU):
super().__init__() super().__init__()
img_size = to_2tuple(img_size) img_size = to_2tuple(img_size)
num_patches = (img_size[1] // patch_size) * (img_size[0] // patch_size) num_patches = (img_size[1] // patch_size) * (img_size[0] // patch_size)
@ -152,19 +152,19 @@ class ConvPatchEmbed(nn.Module):
if patch_size == 16: if patch_size == 16:
self.proj = torch.nn.Sequential( self.proj = torch.nn.Sequential(
conv3x3(in_chans, embed_dim // 8, 2), conv3x3(in_chans, embed_dim // 8, 2),
nn.GELU(), act_layer(),
conv3x3(embed_dim // 8, embed_dim // 4, 2), conv3x3(embed_dim // 8, embed_dim // 4, 2),
nn.GELU(), act_layer(),
conv3x3(embed_dim // 4, embed_dim // 2, 2), conv3x3(embed_dim // 4, embed_dim // 2, 2),
nn.GELU(), act_layer(),
conv3x3(embed_dim // 2, embed_dim, 2), conv3x3(embed_dim // 2, embed_dim, 2),
) )
elif patch_size == 8: elif patch_size == 8:
self.proj = torch.nn.Sequential( self.proj = torch.nn.Sequential(
conv3x3(3, embed_dim // 4, 2), conv3x3(in_chans, embed_dim // 4, 2),
nn.GELU(), act_layer(),
conv3x3(embed_dim // 4, embed_dim // 2, 2), conv3x3(embed_dim // 4, embed_dim // 2, 2),
nn.GELU(), act_layer(),
conv3x3(embed_dim // 2, embed_dim, 2), conv3x3(embed_dim // 2, embed_dim, 2),
) )
else: else:
@ -323,7 +323,7 @@ class XCiT(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=False): act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=False):
""" """
Args: Args:
img_size (int, tuple): input image size img_size (int, tuple): input image size
@ -356,9 +356,10 @@ class XCiT(nn.Module):
self.num_classes = num_classes self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim self.num_features = self.embed_dim = embed_dim
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.patch_embed = ConvPatchEmbed( self.patch_embed = ConvPatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, act_layer=act_layer)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.use_pos_embed = use_pos_embed self.use_pos_embed = use_pos_embed
@ -369,13 +370,13 @@ class XCiT(nn.Module):
self.blocks = nn.ModuleList([ self.blocks = nn.ModuleList([
XCABlock( XCABlock(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=drop_path_rate, norm_layer=norm_layer, eta=eta) attn_drop=attn_drop_rate, drop_path=drop_path_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta)
for _ in range(depth)]) for _ in range(depth)])
self.cls_attn_blocks = nn.ModuleList([ self.cls_attn_blocks = nn.ModuleList([
ClassAttentionBlock( ClassAttentionBlock(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm) attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm)
for _ in range(cls_attn_layers)]) for _ in range(cls_attn_layers)])
# Classifier head # Classifier head

Loading…
Cancel
Save