@ -332,28 +332,28 @@ default_cfgs = {
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_s_ 21ft1k' : _cfg (
' tf_efficientnetv2_s_ in 21ft1k' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth ' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth ' ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
input_size = ( 3 , 300 , 300 ) , test_input_size = ( 3 , 384 , 384 ) , pool_size = ( 10 , 10 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 300 , 300 ) , test_input_size = ( 3 , 384 , 384 ) , pool_size = ( 10 , 10 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_m_ 21ft1k' : _cfg (
' tf_efficientnetv2_m_ in 21ft1k' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth ' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth ' ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_l_ 21ft1k' : _cfg (
' tf_efficientnetv2_l_ in 21ft1k' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth ' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth ' ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_s_ 21k' : _cfg (
' tf_efficientnetv2_s_ in 21k' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth ' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth ' ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
input_size = ( 3 , 300 , 300 ) , test_input_size = ( 3 , 384 , 384 ) , pool_size = ( 10 , 10 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 300 , 300 ) , test_input_size = ( 3 , 384 , 384 ) , pool_size = ( 10 , 10 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_m_ 21k' : _cfg (
' tf_efficientnetv2_m_ in 21k' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth ' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth ' ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
' tf_efficientnetv2_l_ 21k' : _cfg (
' tf_efficientnetv2_l_ in 21k' : _cfg (
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth ' ,
url = ' https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth ' ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
mean = ( 0.5 , 0.5 , 0.5 ) , std = ( 0.5 , 0.5 , 0.5 ) , num_classes = 21843 ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
input_size = ( 3 , 384 , 384 ) , test_input_size = ( 3 , 480 , 480 ) , pool_size = ( 12 , 12 ) , crop_pct = 1.0 ) ,
@ -1929,62 +1929,62 @@ def tf_efficientnetv2_l(pretrained=False, **kwargs):
@register_model
@register_model
def tf_efficientnetv2_s_ 21ft1k( pretrained = False , * * kwargs ) :
def tf_efficientnetv2_s_ in 21ft1k( pretrained = False , * * kwargs ) :
""" EfficientNet-V2 Small. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
""" EfficientNet-V2 Small. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
"""
"""
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' pad_type ' ] = ' same '
kwargs [ ' pad_type ' ] = ' same '
model = _gen_efficientnetv2_s ( ' tf_efficientnetv2_s_ 21ft1k' , pretrained = pretrained , * * kwargs )
model = _gen_efficientnetv2_s ( ' tf_efficientnetv2_s_ in 21ft1k' , pretrained = pretrained , * * kwargs )
return model
return model
@register_model
@register_model
def tf_efficientnetv2_m_ 21ft1k( pretrained = False , * * kwargs ) :
def tf_efficientnetv2_m_ in 21ft1k( pretrained = False , * * kwargs ) :
""" EfficientNet-V2 Medium. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
""" EfficientNet-V2 Medium. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
"""
"""
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' pad_type ' ] = ' same '
kwargs [ ' pad_type ' ] = ' same '
model = _gen_efficientnetv2_m ( ' tf_efficientnetv2_m_ 21ft1k' , pretrained = pretrained , * * kwargs )
model = _gen_efficientnetv2_m ( ' tf_efficientnetv2_m_ in 21ft1k' , pretrained = pretrained , * * kwargs )
return model
return model
@register_model
@register_model
def tf_efficientnetv2_l_ 21ft1k( pretrained = False , * * kwargs ) :
def tf_efficientnetv2_l_ in 21ft1k( pretrained = False , * * kwargs ) :
""" EfficientNet-V2 Large. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
""" EfficientNet-V2 Large. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
"""
"""
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' pad_type ' ] = ' same '
kwargs [ ' pad_type ' ] = ' same '
model = _gen_efficientnetv2_l ( ' tf_efficientnetv2_l_ 21ft1k' , pretrained = pretrained , * * kwargs )
model = _gen_efficientnetv2_l ( ' tf_efficientnetv2_l_ in 21ft1k' , pretrained = pretrained , * * kwargs )
return model
return model
@register_model
@register_model
def tf_efficientnetv2_s_ 21k( pretrained = False , * * kwargs ) :
def tf_efficientnetv2_s_ in 21k( pretrained = False , * * kwargs ) :
""" EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
""" EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
"""
"""
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' pad_type ' ] = ' same '
kwargs [ ' pad_type ' ] = ' same '
model = _gen_efficientnetv2_s ( ' tf_efficientnetv2_s_ 21k' , pretrained = pretrained , * * kwargs )
model = _gen_efficientnetv2_s ( ' tf_efficientnetv2_s_ in 21k' , pretrained = pretrained , * * kwargs )
return model
return model
@register_model
@register_model
def tf_efficientnetv2_m_ 21k( pretrained = False , * * kwargs ) :
def tf_efficientnetv2_m_ in 21k( pretrained = False , * * kwargs ) :
""" EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
""" EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
"""
"""
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' pad_type ' ] = ' same '
kwargs [ ' pad_type ' ] = ' same '
model = _gen_efficientnetv2_m ( ' tf_efficientnetv2_m_ 21k' , pretrained = pretrained , * * kwargs )
model = _gen_efficientnetv2_m ( ' tf_efficientnetv2_m_ in 21k' , pretrained = pretrained , * * kwargs )
return model
return model
@register_model
@register_model
def tf_efficientnetv2_l_ 21k( pretrained = False , * * kwargs ) :
def tf_efficientnetv2_l_ in 21k( pretrained = False , * * kwargs ) :
""" EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
""" EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
"""
"""
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' bn_eps ' ] = BN_EPS_TF_DEFAULT
kwargs [ ' pad_type ' ] = ' same '
kwargs [ ' pad_type ' ] = ' same '
model = _gen_efficientnetv2_l ( ' tf_efficientnetv2_l_ 21k' , pretrained = pretrained , * * kwargs )
model = _gen_efficientnetv2_l ( ' tf_efficientnetv2_l_ in 21k' , pretrained = pretrained , * * kwargs )
return model
return model