Merge branch 'abcdvzz-master'

pull/660/head
Ross Wightman 4 years ago
commit 6e04da0c54

@ -15,7 +15,7 @@ if hasattr(torch._C, '_jit_set_profiling_executor'):
torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_mode(False)
# transformer models don't support many of the spatial / feature based model functionalities # transformer models don't support many of the spatial / feature based model functionalities
NON_STD_FILTERS = ['vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*'] NON_STD_FILTERS = ['vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*']
NUM_NON_STD = len(NON_STD_FILTERS) NUM_NON_STD = len(NON_STD_FILTERS)
# exclude models that cause specific test failures # exclude models that cause specific test failures

@ -39,6 +39,7 @@ from .vision_transformer_hybrid import *
from .vovnet import * from .vovnet import *
from .xception import * from .xception import *
from .xception_aligned import * from .xception_aligned import *
from .twins import *
from .factory import create_model, split_model_name, safe_model_name from .factory import create_model, split_model_name, safe_model_name
from .helpers import load_checkpoint, resume_checkpoint, model_parameters from .helpers import load_checkpoint, resume_checkpoint, model_parameters

@ -0,0 +1,431 @@
""" Twins
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
- https://arxiv.org/pdf/2104.13840.pdf
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below
"""
# --------------------------------------------------------
# Twins
# Copyright (c) 2021 Meituan
# Licensed under The Apache 2.0 License [see LICENSE for details]
# Written by Xinjie Li, Xiangxiang Chu
# --------------------------------------------------------
import math
from copy import deepcopy
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .layers import Mlp, DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .vision_transformer import Attention
from .helpers import build_model_with_cfg, overlay_external_default_cfg
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'twins_pcpvt_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth',
),
'twins_pcpvt_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth',
),
'twins_pcpvt_large': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth',
),
'twins_svt_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth',
),
'twins_svt_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth',
),
'twins_svt_large': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth',
),
}
Size_ = Tuple[int, int]
class LocallyGroupedAttn(nn.Module):
""" LSA: self attention within a group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
assert ws != 1
super(LocallyGroupedAttn, self).__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_):
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
# both. You can choose any one, we recommend forward_padding because it's neat. However,
# the masking implementation is more reasonable and accurate.
B, N, C = x.shape
H, W = size
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
qkv = self.qkv(x).reshape(
B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
# def forward_mask(self, x, size: Size_):
# B, N, C = x.shape
# H, W = size
# x = x.view(B, H, W, C)
# pad_l = pad_t = 0
# pad_r = (self.ws - W % self.ws) % self.ws
# pad_b = (self.ws - H % self.ws) % self.ws
# x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
# _, Hp, Wp, _ = x.shape
# _h, _w = Hp // self.ws, Wp // self.ws
# mask = torch.zeros((1, Hp, Wp), device=x.device)
# mask[:, -pad_b:, :].fill_(1)
# mask[:, :, -pad_r:].fill_(1)
#
# x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C
# mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h * _w, self.ws * self.ws)
# attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws
# attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0))
# qkv = self.qkv(x).reshape(
# B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
# # n_h, B, _w*_h, nhead, ws*ws, dim
# q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head
# attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws
# attn = attn + attn_mask.unsqueeze(2)
# attn = attn.softmax(dim=-1)
# attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head
# attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
# x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
# if pad_r > 0 or pad_b > 0:
# x = x[:, :H, :W, :].contiguous()
# x = x.reshape(B, N, C)
# x = self.proj(x)
# x = self.proj_drop(x)
# return x
class GlobalSubSampleAttn(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.kv = nn.Linear(dim, dim * 2, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, size: Size_):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr is not None:
x = x.permute(0, 2, 1).reshape(B, C, *size)
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
x = self.norm(x)
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None):
super().__init__()
self.norm1 = norm_layer(dim)
if ws is None:
self.attn = Attention(dim, num_heads, False, None, attn_drop, drop)
elif ws == 1:
self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio)
else:
self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, size: Size_):
x = x + self.drop_path(self.attn(self.norm1(x), size))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PosConv(nn.Module):
# PEG from https://arxiv.org/abs/2102.10882
def __init__(self, in_chans, embed_dim=768, stride=1):
super(PosConv, self).__init__()
self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), )
self.stride = stride
def forward(self, x, size: Size_):
B, N, C = x.shape
cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
x = self.proj(cnn_feat_token)
if self.stride == 1:
x += cnn_feat_token
x = x.flatten(2).transpose(1, 2)
return x
def no_weight_decay(self):
return ['proj.%d.weight' % i for i in range(4)]
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x) -> Tuple[torch.Tensor, Size_]:
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
out_size = (H // self.patch_size[0], W // self.patch_size[1])
return x, out_size
class Twins(nn.Module):
""" Twins Vision Transfomer (Revisiting Spatial Attention)
Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=(64, 128, 256, 512),
num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None,
block_cls=Block):
super().__init__()
self.num_classes = num_classes
self.depths = depths
img_size = to_2tuple(img_size)
prev_chs = in_chans
self.patch_embeds = nn.ModuleList()
self.pos_drops = nn.ModuleList()
for i in range(len(depths)):
self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i]))
self.pos_drops.append(nn.Dropout(p=drop_rate))
prev_chs = embed_dims[i]
img_size = tuple(t // patch_size for t in img_size)
patch_size = 2
self.blocks = nn.ModuleList()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
for k in range(len(depths)):
_block = nn.ModuleList([block_cls(
dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k],
ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])])
self.blocks.append(_block)
cur += depths[k]
self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims])
self.norm = norm_layer(embed_dims[-1])
# classification head
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
# init weights
self.apply(self._init_weights)
@torch.jit.ignore
def no_weight_decay(self):
return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()])
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def forward_features(self, x):
B = x.shape[0]
for i, (embed, drop, blocks, pos_blk) in enumerate(
zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)):
x, size = embed(x)
x = drop(x)
for j, blk in enumerate(blocks):
x = blk(x, size)
if j == 0:
x = pos_blk(x, size) # PEG here
if i < len(self.depths) - 1:
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
x = self.norm(x)
return x.mean(dim=1) # GAP here
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_twins(variant, pretrained=False, default_cfg=None, **kwargs):
if default_cfg is None:
default_cfg = deepcopy(default_cfgs[variant])
overlay_external_default_cfg(default_cfg, kwargs)
default_num_classes = default_cfg['num_classes']
default_img_size = default_cfg['input_size'][-2:]
num_classes = kwargs.pop('num_classes', default_num_classes)
img_size = kwargs.pop('img_size', default_img_size)
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(
Twins, variant, pretrained,
default_cfg=default_cfg,
img_size=img_size,
num_classes=num_classes,
**kwargs)
return model
@register_model
def twins_pcpvt_small(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs)
@register_model
def twins_pcpvt_base(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs)
@register_model
def twins_pcpvt_large(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_small(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_base(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs)
@register_model
def twins_svt_large(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)
Loading…
Cancel
Save