Merge branch 'norm_norm_norm' into bits_and_tpu

pull/1239/head
Ross Wightman 3 years ago
commit 69e90dcd8c

@ -69,7 +69,7 @@ def drop_block_2d(
def drop_block_fast_2d( def drop_block_fast_2d(
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7,
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
@ -81,24 +81,19 @@ def drop_block_fast_2d(
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
(W - block_size + 1) * (H - block_size + 1)) (W - block_size + 1) * (H - block_size + 1))
if batchwise: block_mask = torch.empty_like(x).bernoulli_(gamma)
# one mask for whole batch, quite a bit faster
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
else:
# mask per batch element
block_mask = torch.rand_like(x) < gamma
block_mask = F.max_pool2d( block_mask = F.max_pool2d(
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2)
if with_noise: if with_noise:
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) normal_noise = torch.empty_like(x).normal_()
if inplace: if inplace:
x.mul_(1. - block_mask).add_(normal_noise * block_mask) x.mul_(1. - block_mask).add_(normal_noise * block_mask)
else: else:
x = x * (1. - block_mask) + normal_noise * block_mask x = x * (1. - block_mask) + normal_noise * block_mask
else: else:
block_mask = 1 - block_mask block_mask = 1 - block_mask
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype) normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6)).to(dtype=x.dtype)
if inplace: if inplace:
x.mul_(block_mask * normalize_scale) x.mul_(block_mask * normalize_scale)
else: else:
@ -131,13 +126,13 @@ class DropBlock2d(nn.Module):
return x return x
if self.fast: if self.fast:
return drop_block_fast_2d( return drop_block_fast_2d(
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace)
else: else:
return drop_block_2d( return drop_block_2d(
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
def drop_path(x, drop_prob: float = 0., training: bool = False): def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
@ -151,18 +146,19 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
return x return x
keep_prob = 1 - drop_prob keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
random_tensor.floor_() # binarize if keep_prob > 0.0 and scale_by_keep:
output = x.div(keep_prob) * random_tensor random_tensor.div_(keep_prob)
return output return x * random_tensor
class DropPath(nn.Module): class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
""" """
def __init__(self, drop_prob=None): def __init__(self, drop_prob=None, scale_by_keep=True):
super(DropPath, self).__init__() super(DropPath, self).__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x): def forward(self, x):
return drop_path(x, self.drop_prob, self.training) return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

Loading…
Cancel
Save