|
|
|
@ -32,7 +32,6 @@ from functools import partial
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
@ -443,7 +442,7 @@ class RepVggBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
Adapted from impl at https://github.com/DingXiaoH/RepVGG
|
|
|
|
|
|
|
|
|
|
This version does not currently support the deploy optimization. It is currently fixed in 'train' model.
|
|
|
|
|
This version does not currently support the deploy optimization. It is currently fixed in 'train' mode.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None,
|
|
|
|
@ -461,8 +460,8 @@ class RepVggBlock(nn.Module):
|
|
|
|
|
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0],
|
|
|
|
|
groups=groups, drop_block=drop_block, apply_act=False, **layer_args)
|
|
|
|
|
self.conv_1x1 = ConvBnAct(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False, **layer_args)
|
|
|
|
|
self.attn = None if attn_layer is None else attn_layer(out_chs)
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
|
self.attn = nn.Identity() if attn_layer is None else attn_layer(out_chs)
|
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity()
|
|
|
|
|
self.act = act_layer(inplace=True)
|
|
|
|
|
|
|
|
|
|
def init_weights(self, zero_init_last_bn=False):
|
|
|
|
@ -474,14 +473,14 @@ class RepVggBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
if self.identity is None:
|
|
|
|
|
identity = 0
|
|
|
|
|
x = self.conv_1x1(x) + self.conv_kxk(x)
|
|
|
|
|
else:
|
|
|
|
|
identity = self.identity(x)
|
|
|
|
|
x = self.conv_1x1(x) + self.conv_kxk(x)
|
|
|
|
|
if self.attn is not None:
|
|
|
|
|
x = self.attn(x)
|
|
|
|
|
x = self.drop_path(x)
|
|
|
|
|
x = self.act(x + identity)
|
|
|
|
|
x = self.drop_path(x) # not in the paper / official impl, experimental
|
|
|
|
|
x = x + identity
|
|
|
|
|
x = self.attn(x) # no attn in the paper / official impl, experimental
|
|
|
|
|
x = self.act(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -654,54 +653,87 @@ def _create_byobnet(variant, pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gernet_l(pretrained=False, **kwargs):
|
|
|
|
|
""" GEResNet-Large (GENet-Large from official impl)
|
|
|
|
|
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gernet_m(pretrained=False, **kwargs):
|
|
|
|
|
""" GEResNet-Medium (GENet-Normal from official impl)
|
|
|
|
|
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def gernet_s(pretrained=False, **kwargs):
|
|
|
|
|
""" EResNet-Small (GENet-Small from official impl)
|
|
|
|
|
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_a2(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-A2
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b0(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B0
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b1(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B1
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b1g4(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B1g4
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b2(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B2
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b2g4(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B2g4
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b3(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B3
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def repvgg_b3g4(pretrained=False, **kwargs):
|
|
|
|
|
""" RepVGG-B3g4
|
|
|
|
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
|
|
|
|
|
"""
|
|
|
|
|
return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs)
|
|
|
|
|