|
|
@ -34,8 +34,14 @@ from .trace_utils import _assert
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def instance_std(x, eps: float = 1e-5):
|
|
|
|
def instance_std(x, eps: float = 1e-5):
|
|
|
|
rms = x.float().var(dim=(2, 3), unbiased=False, keepdim=True).add(eps).sqrt().to(x.dtype)
|
|
|
|
std = x.float().var(dim=(2, 3), unbiased=False, keepdim=True).add(eps).sqrt().to(x.dtype)
|
|
|
|
return rms.expand(x.shape)
|
|
|
|
return std.expand(x.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def instance_std_tpu(x, eps: float = 1e-5):
|
|
|
|
|
|
|
|
std = manual_var(x, dim=(2, 3)).add(eps).sqrt()
|
|
|
|
|
|
|
|
return std.expand(x.shape)
|
|
|
|
|
|
|
|
# instance_std = instance_std_tpu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def instance_rms(x, eps: float = 1e-5):
|
|
|
|
def instance_rms(x, eps: float = 1e-5):
|
|
|
@ -47,9 +53,9 @@ def manual_var(x, dim: Union[int, Sequence[int]], diff_sqm: bool = False):
|
|
|
|
xm = x.mean(dim=dim, keepdim=True)
|
|
|
|
xm = x.mean(dim=dim, keepdim=True)
|
|
|
|
if diff_sqm:
|
|
|
|
if diff_sqm:
|
|
|
|
# difference of squared mean and mean squared, faster on TPU can be less stable
|
|
|
|
# difference of squared mean and mean squared, faster on TPU can be less stable
|
|
|
|
var = (x.square().mean(dim=(2, 3, 4), keepdim=True) - xm.square()).clamp(0)
|
|
|
|
var = (x.square().mean(dim=dim, keepdim=True) - xm.square()).clamp(0)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
var = (x - xm).square().mean(dim=(2, 3, 4), keepdim=True)
|
|
|
|
var = (x - xm).square().mean(dim=dim, keepdim=True)
|
|
|
|
return var
|
|
|
|
return var
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -57,7 +63,6 @@ def group_std(x, groups: int = 32, eps: float = 1e-5, flatten: bool = False):
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
x_dtype = x.dtype
|
|
|
|
x_dtype = x.dtype
|
|
|
|
_assert(C % groups == 0, '')
|
|
|
|
_assert(C % groups == 0, '')
|
|
|
|
torch.var()
|
|
|
|
|
|
|
|
if flatten:
|
|
|
|
if flatten:
|
|
|
|
x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues
|
|
|
|
x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues
|
|
|
|
std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype)
|
|
|
|
std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype)
|
|
|
@ -116,6 +121,7 @@ class EvoNorm2dB0(nn.Module):
|
|
|
|
if self.v is not None:
|
|
|
|
if self.v is not None:
|
|
|
|
if self.training:
|
|
|
|
if self.training:
|
|
|
|
var = x.float().var(dim=(0, 2, 3), unbiased=False)
|
|
|
|
var = x.float().var(dim=(0, 2, 3), unbiased=False)
|
|
|
|
|
|
|
|
# var = manual_var(x, dim=(0, 2, 3))
|
|
|
|
n = x.numel() / x.shape[1]
|
|
|
|
n = x.numel() / x.shape[1]
|
|
|
|
self.running_var.copy_(
|
|
|
|
self.running_var.copy_(
|
|
|
|
self.running_var * (1 - self.momentum) +
|
|
|
|
self.running_var * (1 - self.momentum) +
|
|
|
|