|
|
@ -21,93 +21,12 @@ from ._efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficie
|
|
|
|
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
|
|
|
|
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
|
|
|
|
from ._features import FeatureInfo, FeatureHooks
|
|
|
|
from ._features import FeatureInfo, FeatureHooks
|
|
|
|
from ._manipulate import checkpoint_seq
|
|
|
|
from ._manipulate import checkpoint_seq
|
|
|
|
|
|
|
|
from ._pretrained import generate_default_cfgs
|
|
|
|
from ._registry import register_model
|
|
|
|
from ._registry import register_model
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['MobileNetV3', 'MobileNetV3Features']
|
|
|
|
__all__ = ['MobileNetV3', 'MobileNetV3Features']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
|
|
|
|
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
|
|
|
|
|
|
|
**kwargs
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
|
|
|
|
'mobilenetv3_large_075': _cfg(url=''),
|
|
|
|
|
|
|
|
'mobilenetv3_large_100': _cfg(
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'),
|
|
|
|
|
|
|
|
'mobilenetv3_large_100_miil': _cfg(
|
|
|
|
|
|
|
|
interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.),
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth'),
|
|
|
|
|
|
|
|
'mobilenetv3_large_100_miil_in21k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth',
|
|
|
|
|
|
|
|
interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), num_classes=11221),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'mobilenetv3_small_050': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
'mobilenetv3_small_075': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
'mobilenetv3_small_100': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'mobilenetv3_rw': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'tf_mobilenetv3_large_075': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_large_100': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_large_minimal_100': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_small_075': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_small_100': _cfg(
|
|
|
|
|
|
|
|
url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_small_minimal_100': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'fbnetv3_b': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth',
|
|
|
|
|
|
|
|
test_input_size=(3, 256, 256), crop_pct=0.95),
|
|
|
|
|
|
|
|
'fbnetv3_d': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth',
|
|
|
|
|
|
|
|
test_input_size=(3, 256, 256), crop_pct=0.95),
|
|
|
|
|
|
|
|
'fbnetv3_g': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth',
|
|
|
|
|
|
|
|
input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"lcnet_035": _cfg(),
|
|
|
|
|
|
|
|
"lcnet_050": _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
"lcnet_075": _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
"lcnet_100": _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
"lcnet_150": _cfg(),
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV3(nn.Module):
|
|
|
|
class MobileNetV3(nn.Module):
|
|
|
|
""" MobiletNet-V3
|
|
|
|
""" MobiletNet-V3
|
|
|
|
|
|
|
|
|
|
|
@ -124,9 +43,24 @@ class MobileNetV3(nn.Module):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
def __init__(
|
|
|
|
self, block_args, num_classes=1000, in_chans=3, stem_size=16, fix_stem=False, num_features=1280,
|
|
|
|
self,
|
|
|
|
head_bias=True, pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True,
|
|
|
|
block_args,
|
|
|
|
round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'):
|
|
|
|
num_classes=1000,
|
|
|
|
|
|
|
|
in_chans=3,
|
|
|
|
|
|
|
|
stem_size=16,
|
|
|
|
|
|
|
|
fix_stem=False,
|
|
|
|
|
|
|
|
num_features=1280,
|
|
|
|
|
|
|
|
head_bias=True,
|
|
|
|
|
|
|
|
pad_type='',
|
|
|
|
|
|
|
|
act_layer=None,
|
|
|
|
|
|
|
|
norm_layer=None,
|
|
|
|
|
|
|
|
se_layer=None,
|
|
|
|
|
|
|
|
se_from_exp=True,
|
|
|
|
|
|
|
|
round_chs_fn=round_channels,
|
|
|
|
|
|
|
|
drop_rate=0.,
|
|
|
|
|
|
|
|
drop_path_rate=0.,
|
|
|
|
|
|
|
|
global_pool='avg',
|
|
|
|
|
|
|
|
):
|
|
|
|
super(MobileNetV3, self).__init__()
|
|
|
|
super(MobileNetV3, self).__init__()
|
|
|
|
act_layer = act_layer or nn.ReLU
|
|
|
|
act_layer = act_layer or nn.ReLU
|
|
|
|
norm_layer = norm_layer or nn.BatchNorm2d
|
|
|
|
norm_layer = norm_layer or nn.BatchNorm2d
|
|
|
@ -145,8 +79,15 @@ class MobileNetV3(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
# Middle stages (IR/ER/DS Blocks)
|
|
|
|
# Middle stages (IR/ER/DS Blocks)
|
|
|
|
builder = EfficientNetBuilder(
|
|
|
|
builder = EfficientNetBuilder(
|
|
|
|
output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp,
|
|
|
|
output_stride=32,
|
|
|
|
act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate)
|
|
|
|
pad_type=pad_type,
|
|
|
|
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
|
|
|
se_from_exp=se_from_exp,
|
|
|
|
|
|
|
|
act_layer=act_layer,
|
|
|
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
|
|
|
se_layer=se_layer,
|
|
|
|
|
|
|
|
drop_path_rate=drop_path_rate,
|
|
|
|
|
|
|
|
)
|
|
|
|
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
|
|
|
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
|
|
|
self.feature_info = builder.features
|
|
|
|
self.feature_info = builder.features
|
|
|
|
head_chs = builder.in_chs
|
|
|
|
head_chs = builder.in_chs
|
|
|
@ -225,9 +166,23 @@ class MobileNetV3Features(nn.Module):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
def __init__(
|
|
|
|
self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3,
|
|
|
|
self,
|
|
|
|
stem_size=16, fix_stem=False, output_stride=32, pad_type='', round_chs_fn=round_channels,
|
|
|
|
block_args,
|
|
|
|
se_from_exp=True, act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.):
|
|
|
|
out_indices=(0, 1, 2, 3, 4),
|
|
|
|
|
|
|
|
feature_location='bottleneck',
|
|
|
|
|
|
|
|
in_chans=3,
|
|
|
|
|
|
|
|
stem_size=16,
|
|
|
|
|
|
|
|
fix_stem=False,
|
|
|
|
|
|
|
|
output_stride=32,
|
|
|
|
|
|
|
|
pad_type='',
|
|
|
|
|
|
|
|
round_chs_fn=round_channels,
|
|
|
|
|
|
|
|
se_from_exp=True,
|
|
|
|
|
|
|
|
act_layer=None,
|
|
|
|
|
|
|
|
norm_layer=None,
|
|
|
|
|
|
|
|
se_layer=None,
|
|
|
|
|
|
|
|
drop_rate=0.,
|
|
|
|
|
|
|
|
drop_path_rate=0.,
|
|
|
|
|
|
|
|
):
|
|
|
|
super(MobileNetV3Features, self).__init__()
|
|
|
|
super(MobileNetV3Features, self).__init__()
|
|
|
|
act_layer = act_layer or nn.ReLU
|
|
|
|
act_layer = act_layer or nn.ReLU
|
|
|
|
norm_layer = norm_layer or nn.BatchNorm2d
|
|
|
|
norm_layer = norm_layer or nn.BatchNorm2d
|
|
|
@ -243,9 +198,16 @@ class MobileNetV3Features(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
# Middle stages (IR/ER/DS Blocks)
|
|
|
|
# Middle stages (IR/ER/DS Blocks)
|
|
|
|
builder = EfficientNetBuilder(
|
|
|
|
builder = EfficientNetBuilder(
|
|
|
|
output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp,
|
|
|
|
output_stride=output_stride,
|
|
|
|
act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer,
|
|
|
|
pad_type=pad_type,
|
|
|
|
drop_path_rate=drop_path_rate, feature_location=feature_location)
|
|
|
|
round_chs_fn=round_chs_fn,
|
|
|
|
|
|
|
|
se_from_exp=se_from_exp,
|
|
|
|
|
|
|
|
act_layer=act_layer,
|
|
|
|
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
|
|
|
|
se_layer=se_layer,
|
|
|
|
|
|
|
|
drop_path_rate=drop_path_rate,
|
|
|
|
|
|
|
|
feature_location=feature_location,
|
|
|
|
|
|
|
|
)
|
|
|
|
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
|
|
|
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
|
|
|
self.feature_info = FeatureInfo(builder.features, out_indices)
|
|
|
|
self.feature_info = FeatureInfo(builder.features, out_indices)
|
|
|
|
self._stage_out_idx = {v['stage']: i for i, v in enumerate(self.feature_info) if i in out_indices}
|
|
|
|
self._stage_out_idx = {v['stage']: i for i, v in enumerate(self.feature_info) if i in out_indices}
|
|
|
@ -286,7 +248,9 @@ def _create_mnv3(variant, pretrained=False, **kwargs):
|
|
|
|
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool')
|
|
|
|
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool')
|
|
|
|
model_cls = MobileNetV3Features
|
|
|
|
model_cls = MobileNetV3Features
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
model_cls, variant, pretrained,
|
|
|
|
model_cls,
|
|
|
|
|
|
|
|
variant,
|
|
|
|
|
|
|
|
pretrained,
|
|
|
|
pretrained_strict=not features_only,
|
|
|
|
pretrained_strict=not features_only,
|
|
|
|
kwargs_filter=kwargs_filter,
|
|
|
|
kwargs_filter=kwargs_filter,
|
|
|
|
**kwargs)
|
|
|
|
**kwargs)
|
|
|
@ -567,6 +531,110 @@ def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
|
|
|
|
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
|
|
|
|
|
|
|
**kwargs
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
|
|
|
|
|
|
'mobilenetv3_large_075.untrained': _cfg(url=''),
|
|
|
|
|
|
|
|
'mobilenetv3_large_100.ra_in1k': _cfg(
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/'),
|
|
|
|
|
|
|
|
'mobilenetv3_large_100.miil_in21k_ft_in1k': _cfg(
|
|
|
|
|
|
|
|
interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.),
|
|
|
|
|
|
|
|
origin_url='https://github.com/Alibaba-MIIL/ImageNet21K',
|
|
|
|
|
|
|
|
paper_ids='arXiv:2104.10972v4',
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/'),
|
|
|
|
|
|
|
|
'mobilenetv3_large_100.miil_in21k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
origin_url='https://github.com/Alibaba-MIIL/ImageNet21K',
|
|
|
|
|
|
|
|
paper_ids='arXiv:2104.10972v4',
|
|
|
|
|
|
|
|
interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), num_classes=11221),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'mobilenetv3_small_050.lamb_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
'mobilenetv3_small_075.lamb_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
'mobilenetv3_small_100.lamb_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'mobilenetv3_rw.rmsp_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
|
|
|
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'tf_mobilenetv3_large_075.in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_large_100.in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_large_minimal_100.in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_small_075.in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_small_100.in1k': _cfg(
|
|
|
|
|
|
|
|
url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
'tf_mobilenetv3_small_minimal_100.in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'fbnetv3_b.ra2_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
test_input_size=(3, 256, 256), crop_pct=0.95),
|
|
|
|
|
|
|
|
'fbnetv3_d.ra2_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
test_input_size=(3, 256, 256), crop_pct=0.95),
|
|
|
|
|
|
|
|
'fbnetv3_g.ra2_in1k': _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"lcnet_035.untrained": _cfg(),
|
|
|
|
|
|
|
|
"lcnet_050.ra2_in1k": _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
"lcnet_075.ra2_in1k": _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
"lcnet_100.ra2_in1k": _cfg(
|
|
|
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth',
|
|
|
|
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
|
|
|
|
interpolation='bicubic',
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
"lcnet_150.untrained": _cfg(),
|
|
|
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_large_075(pretrained=False, **kwargs):
|
|
|
|
def mobilenetv3_large_075(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
""" MobileNet V3 """
|
|
|
@ -581,24 +649,6 @@ def mobilenetv3_large_100(pretrained=False, **kwargs):
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def mobilenetv3_large_100_miil(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" MobileNet V3
|
|
|
|
|
|
|
|
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_100_miil', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def mobilenetv3_large_100_miil_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" MobileNet V3, 21k pretraining
|
|
|
|
|
|
|
|
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_100_miil_in21k', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_small_050(pretrained=False, **kwargs):
|
|
|
|
def mobilenetv3_small_050(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
""" MobileNet V3 """
|
|
|
|