Merge branch 'master' of github.com:rwightman/pytorch-models

pull/1/head
Ross Wightman 6 years ago
commit 63e677d03b

@ -20,7 +20,7 @@ def get_model_meanstd(model_name):
model_name = model_name.lower()
if 'dpn' in model_name:
return IMAGENET_DPN_MEAN, IMAGENET_DPN_STD
elif 'ception' in model_name:
elif 'ception' in model_name or 'nasnet' in model_name:
return IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
else:
return IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
@ -30,7 +30,7 @@ def get_model_mean(model_name):
model_name = model_name.lower()
if 'dpn' in model_name:
return IMAGENET_DPN_STD
elif 'ception' in model_name:
elif 'ception' in model_name or 'nasnet' in model_name:
return IMAGENET_INCEPTION_MEAN
else:
return IMAGENET_DEFAULT_MEAN
@ -40,7 +40,7 @@ def get_model_std(model_name):
model_name = model_name.lower()
if 'dpn' in model_name:
return IMAGENET_DEFAULT_STD
elif 'ception' in model_name:
elif 'ception' in model_name or 'nasnet' in model_name:
return IMAGENET_INCEPTION_STD
else:
return IMAGENET_DEFAULT_STD

@ -12,6 +12,7 @@ from .senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152,
seresnext26_32x4d, seresnext50_32x4d, seresnext101_32x4d
#from .resnext import resnext50, resnext101, resnext152
from .xception import xception
from .pnasnet import pnasnet5large
model_config_dict = {
'resnet18': {
@ -48,6 +49,8 @@ model_config_dict = {
'model_name': 'inception_resnet_v2', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'le'},
'xception': {
'model_name': 'xception', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'le'},
'pnasnet5large': {
'model_name': 'pnasnet5large', 'num_classes': 1000, 'input_size': 331, 'normalizer': 'le'}
}
@ -118,6 +121,8 @@ def create_model(
model = resnext152_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
elif model_name == 'xception':
model = xception(num_classes=num_classes, pretrained=pretrained)
elif model_name == 'pnasnet5large':
model = pnasnet5large(num_classes=num_classes, pretrained=pretrained)
else:
assert False and "Invalid model"

@ -5,7 +5,6 @@ import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
pretrained_settings = {
'pnasnet5large': {
'imagenet': {
@ -292,6 +291,8 @@ class PNASNet5Large(nn.Module):
def __init__(self, num_classes=1001):
super(PNASNet5Large, self).__init__()
self.num_classes = num_classes
self.num_features = 4320
self.conv_0 = nn.Sequential(OrderedDict([
('conv', nn.Conv2d(3, 96, kernel_size=3, stride=2, bias=False)),
('bn', nn.BatchNorm2d(96, eps=0.001))
@ -335,9 +336,20 @@ class PNASNet5Large(nn.Module):
self.relu = nn.ReLU()
self.avg_pool = nn.AvgPool2d(11, stride=1, padding=0)
self.dropout = nn.Dropout(0.5)
self.last_linear = nn.Linear(4320, num_classes)
self.last_linear = nn.Linear(self.num_features, num_classes)
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes):
self.num_classes = num_classes
del self.last_linear
if num_classes:
self.last_linear = nn.Linear(self.num_features, num_classes)
else:
self.last_linear = None
def features(self, x):
def forward_features(self, x, pool=True):
x_conv_0 = self.conv_0(x)
x_stem_0 = self.cell_stem_0(x_conv_0)
x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0)
@ -353,19 +365,16 @@ class PNASNet5Large(nn.Module):
x_cell_9 = self.cell_9(x_cell_7, x_cell_8)
x_cell_10 = self.cell_10(x_cell_8, x_cell_9)
x_cell_11 = self.cell_11(x_cell_9, x_cell_10)
return x_cell_11
def logits(self, features):
x = self.relu(features)
x = self.relu(x_cell_11)
if pool:
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.last_linear(x)
return x
def forward(self, input):
x = self.features(input)
x = self.logits(x)
x = self.forward_features(input)
x = self.dropout(x)
x = self.last_linear(x)
return x
@ -375,7 +384,7 @@ def pnasnet5large(num_classes=1001, pretrained='imagenet'):
<https://arxiv.org/abs/1712.00559>`_ paper.
"""
if pretrained:
settings = pretrained_settings['pnasnet5large'][pretrained]
settings = pretrained_settings['pnasnet5large']['imagenet']
assert num_classes == settings[
'num_classes'], 'num_classes should be {}, but is {}'.format(
settings['num_classes'], num_classes)
@ -384,18 +393,12 @@ def pnasnet5large(num_classes=1001, pretrained='imagenet'):
model = PNASNet5Large(num_classes=1001)
model.load_state_dict(model_zoo.load_url(settings['url']))
if pretrained == 'imagenet':
#if pretrained == 'imagenet':
new_last_linear = nn.Linear(model.last_linear.in_features, 1000)
new_last_linear.weight.data = model.last_linear.weight.data[1:]
new_last_linear.bias.data = model.last_linear.bias.data[1:]
model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = PNASNet5Large(num_classes=num_classes)
return model

@ -127,6 +127,7 @@ class Xception(nn.Module):
"""
super(Xception, self).__init__()
self.num_classes = num_classes
self.num_features = 2048
self.conv1 = nn.Conv2d(3, 32, 3, 2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
@ -156,10 +157,10 @@ class Xception(nn.Module):
self.bn3 = nn.BatchNorm2d(1536)
# do relu here
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(2048)
self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(self.num_features)
self.fc = nn.Linear(2048, num_classes)
self.fc = nn.Linear(self.num_features, num_classes)
# #------- init weights --------
for m in self.modules():
@ -169,7 +170,18 @@ class Xception(nn.Module):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward_features(self, input):
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes):
self.num_classes = num_classes
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features, num_classes)
else:
self.fc = None
def forward_features(self, input, pool=True):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
@ -197,19 +209,16 @@ class Xception(nn.Module):
x = self.conv4(x)
x = self.bn4(x)
return x
def logits(self, features):
x = self.relu(features)
x = self.relu(x)
if pool:
x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
x = self.last_linear(x)
return x
def forward(self, input):
x = self.forward_features(input)
x = self.logits(x)
x = self.fc(x)
return x
@ -223,13 +232,4 @@ def xception(num_classes=1000, pretrained=False):
model = Xception(num_classes=num_classes)
model.load_state_dict(model_zoo.load_url(config['url']))
model.input_space = config['input_space']
model.input_size = config['input_size']
model.input_range = config['input_range']
model.mean = config['mean']
model.std = config['std']
# TODO: ugly
model.last_linear = model.fc
del model.fc
return model

@ -93,6 +93,8 @@ parser.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA amp for mixed precision training')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='path to output folder (default: none, current dir)')
parser.add_argument('--eval-metric', default='prec1', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "prec1"')
parser.add_argument("--local_rank", default=0, type=int)
@ -238,10 +240,13 @@ def main():
if args.local_rank == 0:
print('Scheduled epochs: ', num_epochs)
eval_metric = args.eval_metric
saver = None
if output_dir:
saver = CheckpointSaver(checkpoint_dir=output_dir)
best_loss = None
decreasing = True if eval_metric == 'loss' else False
saver = CheckpointSaver(checkpoint_dir=output_dir, decreasing=decreasing)
best_metric = None
best_epoch = None
try:
for epoch in range(start_epoch, num_epochs):
if args.distributed:
@ -255,15 +260,15 @@ def main():
model, loader_eval, validate_loss_fn, args)
if lr_scheduler is not None:
lr_scheduler.step(epoch, eval_metrics['eval_loss'])
lr_scheduler.step(epoch, eval_metrics[eval_metric])
update_summary(
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
write_header=best_loss is None)
write_header=best_metric is None)
if saver is not None:
# save proper checkpoint with eval metric
best_loss = saver.save_checkpoint({
best_metric, best_epoch = saver.save_checkpoint({
'epoch': epoch + 1,
'arch': args.model,
'state_dict': model.state_dict(),
@ -271,11 +276,12 @@ def main():
'args': args,
},
epoch=epoch + 1,
metric=eval_metrics['eval_loss'])
metric=eval_metrics[eval_metric])
except KeyboardInterrupt:
pass
print('*** Best loss: {0} (epoch {1})'.format(best_loss[1], best_loss[0]))
if best_metric is not None:
print('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
def train_epoch(
@ -363,7 +369,7 @@ def train_epoch(
end = time.time()
return OrderedDict([('train_loss', losses_m.avg)])
return OrderedDict([('loss', losses_m.avg)])
def validate(model, loader, loss_fn, args):
@ -418,7 +424,7 @@ def validate(model, loader, loss_fn, args):
batch_time=batch_time_m, loss=losses_m,
top1=prec1_m, top5=prec5_m))
metrics = OrderedDict([('eval_loss', losses_m.avg), ('eval_prec1', prec1_m.avg)])
metrics = OrderedDict([('loss', losses_m.avg), ('prec1', prec1_m.avg), ('prec5', prec5_m.avg)])
return metrics

@ -6,6 +6,7 @@ import os
import shutil
import glob
import csv
import operator
from collections import OrderedDict
@ -16,24 +17,32 @@ class CheckpointSaver:
recovery_prefix='recovery',
checkpoint_dir='',
recovery_dir='',
decreasing=False,
verbose=True,
max_history=10):
self.checkpoint_files = []
# state
self.checkpoint_files = [] # (filename, metric) tuples in order of decreasing betterness
self.best_epoch = None
self.best_metric = None
self.worst_metric = None
self.max_history = max_history
assert self.max_history >= 1
self.curr_recovery_file = ''
self.last_recovery_file = ''
# config
self.checkpoint_dir = checkpoint_dir
self.recovery_dir = recovery_dir
self.save_prefix = checkpoint_prefix
self.recovery_prefix = recovery_prefix
self.extension = '.pth.tar'
self.decreasing = decreasing # a lower metric is better if True
self.cmp = operator.lt if decreasing else operator.gt # True if lhs better than rhs
self.verbose = verbose
self.max_history = max_history
assert self.max_history >= 1
def save_checkpoint(self, state, epoch, metric=None):
worst_metric = self.checkpoint_files[-1] if self.checkpoint_files else None
if len(self.checkpoint_files) < self.max_history or metric < worst_metric[1]:
worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None
if len(self.checkpoint_files) < self.max_history or self.cmp(metric, worst_file[1]):
if len(self.checkpoint_files) >= self.max_history:
self._cleanup_checkpoints(1)
@ -43,16 +52,21 @@ class CheckpointSaver:
state['metric'] = metric
torch.save(state, save_path)
self.checkpoint_files.append((save_path, metric))
self.checkpoint_files = sorted(self.checkpoint_files, key=lambda x: x[1])
self.checkpoint_files = sorted(
self.checkpoint_files, key=lambda x: x[1],
reverse=not self.decreasing) # sort in descending order if a lower metric is not better
if self.verbose:
print("Current checkpoints:")
for c in self.checkpoint_files:
print(c)
if metric is not None and (self.best_metric is None or metric < self.best_metric[1]):
self.best_metric = (epoch, metric)
if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)):
self.best_epoch = epoch
self.best_metric = metric
shutil.copyfile(save_path, os.path.join(self.checkpoint_dir, 'model_best' + self.extension))
return None, None if self.best_metric is None else self.best_metric
return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch)
def _cleanup_checkpoints(self, trim=0):
trim = min(len(self.checkpoint_files), trim)
@ -62,6 +76,7 @@ class CheckpointSaver:
to_delete = self.checkpoint_files[delete_index:]
for d in to_delete:
try:
if self.verbose:
print('Cleaning checkpoint: ', d)
os.remove(d[0])
except Exception as e:
@ -74,6 +89,7 @@ class CheckpointSaver:
torch.save(state, save_path)
if os.path.exists(self.last_recovery_file):
try:
if self.verbose:
print('Cleaning recovery', self.last_recovery_file)
os.remove(self.last_recovery_file)
except Exception as e:
@ -143,8 +159,8 @@ def get_outdir(path, *paths, inc=False):
def update_summary(epoch, train_metrics, eval_metrics, filename, write_header=False):
rowd = OrderedDict(epoch=epoch)
rowd.update(train_metrics)
rowd.update(eval_metrics)
rowd.update([('train_' + k, v) for k, v in train_metrics.items()])
rowd.update([('eval_' + k, v) for k, v in eval_metrics.items()])
with open(filename, mode='a') as cf:
dw = csv.DictWriter(cf, fieldnames=rowd.keys())
if write_header: # first iteration (epoch == 1 can't be used)

Loading…
Cancel
Save