|
|
@ -8,12 +8,12 @@ from timm import list_models, create_model
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters='*efficientnet_l2*'))
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters='*efficientnet_l2*'))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward(model_name, batch_size):
|
|
|
|
def test_model_forward(model_name, batch_size):
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
"""Run a single forward pass with each model"""
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
inputs = torch.randn((batch_size, *model.default_cfg['input_size']))
|
|
|
|
inputs = torch.randn((batch_size, *model.default_cfg['input_size']))
|
|
|
|
outputs = model(inputs)
|
|
|
|
outputs = model(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|