|
|
@ -17,11 +17,15 @@ paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.128
|
|
|
|
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import math
|
|
|
|
import torch.nn as nn
|
|
|
|
import logging
|
|
|
|
from functools import partial
|
|
|
|
from functools import partial
|
|
|
|
from collections import OrderedDict
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .layers import DropPath, to_2tuple, trunc_normal_
|
|
|
|
from .layers import DropPath, to_2tuple, trunc_normal_
|
|
|
@ -29,6 +33,8 @@ from .resnet import resnet26d, resnet50d
|
|
|
|
from .resnetv2 import ResNetV2, StdConv2dSame
|
|
|
|
from .resnetv2 import ResNetV2, StdConv2dSame
|
|
|
|
from .registry import register_model
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
return {
|
|
|
@ -94,7 +100,7 @@ default_cfgs = {
|
|
|
|
# hybrid models (weights ported from official Google JAX impl)
|
|
|
|
# hybrid models (weights ported from official Google JAX impl)
|
|
|
|
'vit_base_resnet50_224_in21k': _cfg(
|
|
|
|
'vit_base_resnet50_224_in21k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
|
|
|
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9),
|
|
|
|
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9),
|
|
|
|
'vit_base_resnet50_384': _cfg(
|
|
|
|
'vit_base_resnet50_384': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
|
|
|
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
|
|
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
|
|
@ -106,15 +112,15 @@ default_cfgs = {
|
|
|
|
'vit_base_resnet50d_224': _cfg(),
|
|
|
|
'vit_base_resnet50d_224': _cfg(),
|
|
|
|
|
|
|
|
|
|
|
|
# deit models (FB weights)
|
|
|
|
# deit models (FB weights)
|
|
|
|
'deit_tiny_patch16_224': _cfg(
|
|
|
|
'vit_deit_tiny_patch16_224': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'),
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'),
|
|
|
|
'deit_small_patch16_224': _cfg(
|
|
|
|
'vit_deit_small_patch16_224': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'),
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'),
|
|
|
|
'deit_base_patch16_224': _cfg(
|
|
|
|
'vit_deit_base_patch16_224': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',),
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',),
|
|
|
|
'deit_base_patch16_384': _cfg(
|
|
|
|
'vit_deit_base_patch16_384': _cfg(
|
|
|
|
url='', # no weights yet
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
|
|
|
|
input_size=(3, 384, 384)),
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -253,11 +259,12 @@ class VisionTransformer(nn.Module):
|
|
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
|
|
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, representation_size=None,
|
|
|
|
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
|
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm):
|
|
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None):
|
|
|
|
super().__init__()
|
|
|
|
super().__init__()
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
|
|
|
|
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
|
|
|
|
|
|
|
|
if hybrid_backbone is not None:
|
|
|
|
if hybrid_backbone is not None:
|
|
|
|
self.patch_embed = HybridEmbed(
|
|
|
|
self.patch_embed = HybridEmbed(
|
|
|
@ -290,7 +297,7 @@ class VisionTransformer(nn.Module):
|
|
|
|
self.pre_logits = nn.Identity()
|
|
|
|
self.pre_logits = nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
# Classifier head
|
|
|
|
# Classifier head
|
|
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
|
@ -338,180 +345,196 @@ class VisionTransformer(nn.Module):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16):
|
|
|
|
def resize_pos_embed(posemb, posemb_new):
|
|
|
|
|
|
|
|
# Rescale the grid of position embeddings when loading from state_dict
|
|
|
|
|
|
|
|
# Adapted from
|
|
|
|
|
|
|
|
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
|
|
|
|
|
|
|
|
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
|
|
|
|
|
|
|
|
ntok_new = posemb_new.shape[1]
|
|
|
|
|
|
|
|
if True:
|
|
|
|
|
|
|
|
posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
|
|
|
|
|
|
|
|
ntok_new -= 1
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
|
|
|
|
|
|
|
|
gs_old = int(math.sqrt(len(posemb_grid)))
|
|
|
|
|
|
|
|
gs_new = int(math.sqrt(ntok_new))
|
|
|
|
|
|
|
|
_logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)
|
|
|
|
|
|
|
|
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
|
|
|
|
|
|
|
posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
|
|
|
|
|
|
|
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
|
|
|
|
|
|
|
|
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
|
|
|
|
|
|
|
state_dict['pos_embed'] = posemb
|
|
|
|
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
|
|
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
|
|
|
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
|
|
|
out_dict = {}
|
|
|
|
out_dict = {}
|
|
|
|
|
|
|
|
if 'model' in state_dict:
|
|
|
|
|
|
|
|
# for deit models
|
|
|
|
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
if 'patch_embed.proj.weight' in k:
|
|
|
|
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
|
|
|
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
|
|
|
# for old models that I trained prior to conv based patchification
|
|
|
|
|
|
|
|
v = v.reshape(model.patch_embed.proj.weight.shape)
|
|
|
|
|
|
|
|
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
|
|
|
|
|
|
|
|
# to resize pos embedding when using model at different size from pretrained weights
|
|
|
|
|
|
|
|
v = resize_pos_embed(v, model.pos_embed)
|
|
|
|
out_dict[k] = v
|
|
|
|
out_dict[k] = v
|
|
|
|
return out_dict
|
|
|
|
return out_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_vision_transformer(variant, pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
default_cfg = default_cfgs[variant]
|
|
|
|
|
|
|
|
default_num_classes = default_cfg['num_classes']
|
|
|
|
|
|
|
|
default_img_size = default_cfg['input_size'][-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_classes = kwargs.pop('num_classes', default_num_classes)
|
|
|
|
|
|
|
|
img_size = kwargs.pop('img_size', default_img_size)
|
|
|
|
|
|
|
|
repr_size = kwargs.pop('representation_size', None)
|
|
|
|
|
|
|
|
if repr_size is not None and num_classes != default_num_classes:
|
|
|
|
|
|
|
|
# remove representation layer if fine-tuning
|
|
|
|
|
|
|
|
_logger.info("Removing representation layer for fine-tuning.")
|
|
|
|
|
|
|
|
repr_size = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = VisionTransformer(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3),
|
|
|
|
|
|
|
|
filter_fn=partial(checkpoint_filter_fn, model=model))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
def vit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3.,
|
|
|
|
|
|
|
|
qkv_bias=False, norm_layer=nn.LayerNorm, **kwargs)
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
# NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model
|
|
|
|
# NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model
|
|
|
|
kwargs.setdefault('qk_scale', 768 ** -0.5)
|
|
|
|
model_kwargs.setdefault('qk_scale', 768 ** -0.5)
|
|
|
|
model = VisionTransformer(patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3., **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_small_patch16_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_base_patch16_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_224(pretrained=False, **kwargs):
|
|
|
|
def vit_base_patch32_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
img_size=224, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_base_patch32_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
def vit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_base_patch16_384']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_384(pretrained=False, **kwargs):
|
|
|
|
def vit_base_patch32_384(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(
|
|
|
|
img_size=384, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_base_patch32_384']
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
def vit_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_large_patch16_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch32_224(pretrained=False, **kwargs):
|
|
|
|
def vit_large_patch32_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
img_size=224, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_large_patch32_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch16_384(pretrained=False, **kwargs):
|
|
|
|
def vit_large_patch16_384(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_large_patch16_384']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
num_classes = kwargs.pop('num_classes', 21843)
|
|
|
|
model_kwargs = dict(
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, representation_size=768, **kwargs)
|
|
|
|
patch_size=16, num_classes=num_classes, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
representation_size=768, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
return model
|
|
|
|
model.default_cfg = default_cfgs['vit_base_patch16_224_in21k']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
@register_model
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
|
|
|
|
def vit_base_patch16_384_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, representation_size=768, **kwargs)
|
|
|
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
num_classes = kwargs.pop('num_classes', 21843)
|
|
|
|
model_kwargs = dict(
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, representation_size=768, **kwargs)
|
|
|
|
img_size=224, num_classes=num_classes, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
qkv_bias=True, representation_size=768, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_base_patch32_224_in21k']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
num_classes = kwargs.pop('num_classes', 21843)
|
|
|
|
model_kwargs = dict(
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, representation_size=1024, **kwargs)
|
|
|
|
patch_size=16, num_classes=num_classes, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
representation_size=1024, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_large_patch16_224_in21k']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @register_model
|
|
|
|
|
|
|
|
# def vit_large_patch16_384_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
# model_kwargs = dict(
|
|
|
|
|
|
|
|
# patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, representation_size=1024, **kwargs)
|
|
|
|
|
|
|
|
# model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
# return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
num_classes = kwargs.get('num_classes', 21843)
|
|
|
|
model_kwargs = dict(
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, representation_size=1024, **kwargs)
|
|
|
|
img_size=224, num_classes=num_classes, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4,
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
qkv_bias=True, representation_size=1024, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_large_patch32_224_in21k']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
|
|
|
|
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
|
|
|
|
num_classes = kwargs.pop('num_classes', 21843)
|
|
|
|
model_kwargs = dict(
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, representation_size=1280, **kwargs)
|
|
|
|
img_size=224, patch_size=14, num_classes=num_classes, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4,
|
|
|
|
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
qkv_bias=True, representation_size=1280, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_huge_patch14_224_in21k']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def vit_base_resnet50_224_in21k(pretrained=False, **kwargs):
|
|
|
|
def vit_base_resnet50_224_in21k(pretrained=False, **kwargs):
|
|
|
|
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
|
|
|
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
|
|
|
num_classes = kwargs.pop('num_classes', 21843)
|
|
|
|
|
|
|
|
backbone = ResNetV2(
|
|
|
|
backbone = ResNetV2(
|
|
|
|
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
|
|
|
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(
|
|
|
|
img_size=224, num_classes=num_classes, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone,
|
|
|
|
hybrid_backbone=backbone, representation_size=768, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
representation_size=768, **kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_base_resnet50_224_in21k']
|
|
|
|
model = _create_vision_transformer('vit_base_resnet50_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -520,12 +543,8 @@ def vit_base_resnet50_384(pretrained=False, **kwargs):
|
|
|
|
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
|
|
|
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
|
|
|
backbone = ResNetV2(
|
|
|
|
backbone = ResNetV2(
|
|
|
|
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
|
|
|
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
img_size=384, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone,
|
|
|
|
model = _create_vision_transformer('vit_base_resnet50_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['vit_base_resnet50_384']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -533,9 +552,8 @@ def vit_base_resnet50_384(pretrained=False, **kwargs):
|
|
|
|
def vit_small_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
def vit_small_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
backbone = resnet26d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
backbone = resnet26d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
|
|
|
img_size=224, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_resnet26d_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_small_resnet26d_224']
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -543,9 +561,8 @@ def vit_small_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
def vit_small_resnet50d_s3_224(pretrained=False, **kwargs):
|
|
|
|
def vit_small_resnet50d_s3_224(pretrained=False, **kwargs):
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
backbone = resnet50d(pretrained=pretrained_backbone, features_only=True, out_indices=[3])
|
|
|
|
backbone = resnet50d(pretrained=pretrained_backbone, features_only=True, out_indices=[3])
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
|
|
|
img_size=224, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_resnet50d_s3_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_small_resnet50d_s3_224']
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -553,9 +570,8 @@ def vit_small_resnet50d_s3_224(pretrained=False, **kwargs):
|
|
|
|
def vit_base_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
def vit_base_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
backbone = resnet26d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
backbone = resnet26d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
img_size=224, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_resnet26d_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_base_resnet26d_224']
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -563,55 +579,34 @@ def vit_base_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
def vit_base_resnet50d_224(pretrained=False, **kwargs):
|
|
|
|
def vit_base_resnet50d_224(pretrained=False, **kwargs):
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
backbone = resnet50d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
backbone = resnet50d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
img_size=224, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_resnet50d_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
model.default_cfg = default_cfgs['vit_base_resnet50d_224']
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def deit_tiny_patch16_224(pretrained=False, **kwargs):
|
|
|
|
def vit_deit_tiny_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, **kwargs)
|
|
|
|
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['deit_tiny_patch16_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model'])
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def deit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
def vit_deit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, **kwargs)
|
|
|
|
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['deit_small_patch16_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model'])
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def deit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
def vit_deit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['deit_base_patch16_224']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model'])
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def deit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
def vit_deit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
|
|
model = _create_vision_transformer('vit_deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfgs['deit_base_patch16_384']
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(
|
|
|
|
|
|
|
|
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model'])
|
|
|
|
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|