parent
0c874195db
commit
4d505e0785
@ -0,0 +1,438 @@
|
|||||||
|
"""Pytorch impl of Gluon Xception
|
||||||
|
This is a port of the Gluon Xception code and weights, itself ported from a PyTorch DeepLab impl.
|
||||||
|
|
||||||
|
Gluon model: (https://gluon-cv.mxnet.io/_modules/gluoncv/model_zoo/xception.html)
|
||||||
|
Original PyTorch DeepLab impl: https://github.com/jfzhang95/pytorch-deeplab-xception
|
||||||
|
|
||||||
|
Hacked together by Ross Wightman
|
||||||
|
"""
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
from .registry import register_model
|
||||||
|
from .helpers import load_pretrained
|
||||||
|
from .adaptive_avgmax_pool import select_adaptive_pool2d
|
||||||
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
|
|
||||||
|
__all__ = ['Xception65', 'Xception71']
|
||||||
|
|
||||||
|
default_cfgs = {
|
||||||
|
'gluon_xception65': {
|
||||||
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_xception-7015a15c.pth',
|
||||||
|
'input_size': (3, 299, 299),
|
||||||
|
'crop_pct': 0.875,
|
||||||
|
'interpolation': 'bicubic',
|
||||||
|
'mean': IMAGENET_DEFAULT_MEAN,
|
||||||
|
'std': IMAGENET_DEFAULT_STD,
|
||||||
|
'num_classes': 1000,
|
||||||
|
'first_conv': 'conv1',
|
||||||
|
'classifier': 'fc'
|
||||||
|
# The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
|
||||||
|
},
|
||||||
|
'gluon_xception71': {
|
||||||
|
'url': '',
|
||||||
|
'input_size': (3, 299, 299),
|
||||||
|
'crop_pct': 0.875,
|
||||||
|
'interpolation': 'bicubic',
|
||||||
|
'mean': IMAGENET_DEFAULT_MEAN,
|
||||||
|
'std': IMAGENET_DEFAULT_STD,
|
||||||
|
'num_classes': 1000,
|
||||||
|
'first_conv': 'conv1',
|
||||||
|
'classifier': 'fc'
|
||||||
|
# The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
""" PADDING NOTES
|
||||||
|
The original PyTorch and Gluon impl of these models dutifully reproduced the
|
||||||
|
aligned padding added to Tensorflow models for Deeplab. This padding was compensating
|
||||||
|
for Tensorflow 'SAME' padding. PyTorch symmetric padding behaves the way we'd want it to.
|
||||||
|
|
||||||
|
So, I'm phasing out the 'fixed_padding' ported from TF and replacing with normal
|
||||||
|
PyTorch padding, some asserts to validate the equivalence for any scenario we'd
|
||||||
|
care about before removing altogether.
|
||||||
|
"""
|
||||||
|
_USE_FIXED_PAD = False
|
||||||
|
|
||||||
|
|
||||||
|
def _pytorch_padding(kernel_size, stride=1, dilation=1, **_):
|
||||||
|
if _USE_FIXED_PAD:
|
||||||
|
return 0 # FIXME remove once verified
|
||||||
|
else:
|
||||||
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
||||||
|
|
||||||
|
# FIXME remove once verified
|
||||||
|
fp = _fixed_padding(kernel_size, dilation)
|
||||||
|
assert all(padding == p for p in fp)
|
||||||
|
|
||||||
|
return padding
|
||||||
|
|
||||||
|
|
||||||
|
def _fixed_padding(kernel_size, dilation):
|
||||||
|
kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1)
|
||||||
|
pad_total = kernel_size_effective - 1
|
||||||
|
pad_beg = pad_total // 2
|
||||||
|
pad_end = pad_total - pad_beg
|
||||||
|
return [pad_beg, pad_end, pad_beg, pad_end]
|
||||||
|
|
||||||
|
|
||||||
|
class SeparableConv2d(nn.Module):
|
||||||
|
def __init__(self, inplanes, planes, kernel_size=3, stride=1,
|
||||||
|
dilation=1, bias=False, norm_layer=None, norm_kwargs=None):
|
||||||
|
super(SeparableConv2d, self).__init__()
|
||||||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation = dilation
|
||||||
|
|
||||||
|
padding = _fixed_padding(self.kernel_size, self.dilation)
|
||||||
|
if _USE_FIXED_PAD and any(p > 0 for p in padding):
|
||||||
|
self.fixed_padding = nn.ZeroPad2d(padding)
|
||||||
|
else:
|
||||||
|
self.fixed_padding = None
|
||||||
|
|
||||||
|
# depthwise convolution
|
||||||
|
self.conv_dw = nn.Conv2d(
|
||||||
|
inplanes, inplanes, kernel_size, stride=stride,
|
||||||
|
padding=_pytorch_padding(kernel_size, stride, dilation), dilation=dilation, groups=inplanes, bias=bias)
|
||||||
|
self.bn = norm_layer(num_features=inplanes, **norm_kwargs)
|
||||||
|
# pointwise convolution
|
||||||
|
self.conv_pw = nn.Conv2d(inplanes, planes, kernel_size=1, bias=bias)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.fixed_padding is not None:
|
||||||
|
# FIXME remove once verified
|
||||||
|
x = self.fixed_padding(x)
|
||||||
|
x = self.conv_dw(x)
|
||||||
|
x = self.bn(x)
|
||||||
|
x = self.conv_pw(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
def __init__(self, inplanes, planes, num_reps, stride=1, dilation=1, norm_layer=None,
|
||||||
|
norm_kwargs=None, start_with_relu=True, grow_first=True, is_last=False):
|
||||||
|
super(Block, self).__init__()
|
||||||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||||||
|
if planes != inplanes or stride != 1:
|
||||||
|
self.skip = nn.Sequential()
|
||||||
|
self.skip.add_module('conv1', nn.Conv2d(
|
||||||
|
inplanes, planes, 1, stride=stride, bias=False)),
|
||||||
|
self.skip.add_module('bn1', norm_layer(num_features=planes, **norm_kwargs))
|
||||||
|
else:
|
||||||
|
self.skip = None
|
||||||
|
|
||||||
|
rep = OrderedDict()
|
||||||
|
l = 1
|
||||||
|
filters = inplanes
|
||||||
|
if grow_first:
|
||||||
|
if start_with_relu:
|
||||||
|
rep['act%d' % l] = nn.ReLU(inplace=False) # NOTE: silent failure if inplace=True here
|
||||||
|
rep['conv%d' % l] = SeparableConv2d(
|
||||||
|
inplanes, planes, 3, 1, dilation, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
rep['bn%d' % l] = norm_layer(num_features=planes, **norm_kwargs)
|
||||||
|
filters = planes
|
||||||
|
l += 1
|
||||||
|
|
||||||
|
for _ in range(num_reps - 1):
|
||||||
|
if grow_first or start_with_relu:
|
||||||
|
# FIXME being conservative with inplace here, think it's fine to leave True?
|
||||||
|
rep['act%d' % l] = nn.ReLU(inplace=grow_first or not start_with_relu)
|
||||||
|
rep['conv%d' % l] = SeparableConv2d(
|
||||||
|
filters, filters, 3, 1, dilation, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
rep['bn%d' % l] = norm_layer(num_features=filters, **norm_kwargs)
|
||||||
|
l += 1
|
||||||
|
|
||||||
|
if not grow_first:
|
||||||
|
rep['act%d' % l] = nn.ReLU(inplace=True)
|
||||||
|
rep['conv%d' % l] = SeparableConv2d(
|
||||||
|
inplanes, planes, 3, 1, dilation, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
rep['bn%d' % l] = norm_layer(num_features=planes, **norm_kwargs)
|
||||||
|
l += 1
|
||||||
|
|
||||||
|
if stride != 1:
|
||||||
|
rep['act%d' % l] = nn.ReLU(inplace=True)
|
||||||
|
rep['conv%d' % l] = SeparableConv2d(
|
||||||
|
planes, planes, 3, stride, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
rep['bn%d' % l] = norm_layer(num_features=planes, **norm_kwargs)
|
||||||
|
l += 1
|
||||||
|
elif is_last:
|
||||||
|
rep['act%d' % l] = nn.ReLU(inplace=True)
|
||||||
|
rep['conv%d' % l] = SeparableConv2d(
|
||||||
|
planes, planes, 3, 1, dilation, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
rep['bn%d' % l] = norm_layer(num_features=planes, **norm_kwargs)
|
||||||
|
l += 1
|
||||||
|
self.rep = nn.Sequential(rep)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
skip = x
|
||||||
|
if self.skip is not None:
|
||||||
|
skip = self.skip(skip)
|
||||||
|
x = self.rep(x) + skip
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Xception65(nn.Module):
|
||||||
|
"""Modified Aligned Xception
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, norm_layer=nn.BatchNorm2d,
|
||||||
|
norm_kwargs=None, drop_rate=0., global_pool='avg'):
|
||||||
|
super(Xception65, self).__init__()
|
||||||
|
self.drop_rate = drop_rate
|
||||||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||||||
|
if output_stride == 32:
|
||||||
|
entry_block3_stride = 2
|
||||||
|
exit_block20_stride = 2
|
||||||
|
middle_block_dilation = 1
|
||||||
|
exit_block_dilations = (1, 1)
|
||||||
|
elif output_stride == 16:
|
||||||
|
entry_block3_stride = 2
|
||||||
|
exit_block20_stride = 1
|
||||||
|
middle_block_dilation = 1
|
||||||
|
exit_block_dilations = (1, 2)
|
||||||
|
elif output_stride == 8:
|
||||||
|
entry_block3_stride = 1
|
||||||
|
exit_block20_stride = 1
|
||||||
|
middle_block_dilation = 2
|
||||||
|
exit_block_dilations = (2, 4)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
# Entry flow
|
||||||
|
self.conv1 = nn.Conv2d(in_chans, 32, kernel_size=3, stride=2, padding=1, bias=False)
|
||||||
|
self.bn1 = norm_layer(num_features=32, **norm_kwargs)
|
||||||
|
self.relu = nn.ReLU(inplace=True)
|
||||||
|
|
||||||
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
||||||
|
self.bn2 = norm_layer(num_features=64)
|
||||||
|
|
||||||
|
self.block1 = Block(
|
||||||
|
64, 128, num_reps=2, stride=2,
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=False)
|
||||||
|
self.block2 = Block(
|
||||||
|
128, 256, num_reps=2, stride=2,
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=False, grow_first=True)
|
||||||
|
self.block3 = Block(
|
||||||
|
256, 728, num_reps=2, stride=entry_block3_stride,
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=True, grow_first=True, is_last=True)
|
||||||
|
|
||||||
|
# Middle flow
|
||||||
|
self.mid = nn.Sequential(OrderedDict([('block%d' % i, Block(
|
||||||
|
728, 728, num_reps=3, stride=1, dilation=middle_block_dilation,
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=True, grow_first=True))
|
||||||
|
for i in range(4, 20)]))
|
||||||
|
|
||||||
|
# Exit flow
|
||||||
|
self.block20 = Block(
|
||||||
|
728, 1024, num_reps=2, stride=exit_block20_stride, dilation=exit_block_dilations[0],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=True, grow_first=False, is_last=True)
|
||||||
|
|
||||||
|
self.conv3 = SeparableConv2d(
|
||||||
|
1024, 1536, 3, stride=1, dilation=exit_block_dilations[1],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
self.bn3 = norm_layer(num_features=1536, **norm_kwargs)
|
||||||
|
|
||||||
|
self.conv4 = SeparableConv2d(
|
||||||
|
1536, 1536, 3, stride=1, dilation=exit_block_dilations[1],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
self.bn4 = norm_layer(num_features=1536, **norm_kwargs)
|
||||||
|
|
||||||
|
self.conv5 = SeparableConv2d(
|
||||||
|
1536, 2048, 3, stride=1, dilation=exit_block_dilations[1],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
self.bn5 = norm_layer(num_features=2048, **norm_kwargs)
|
||||||
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.fc = nn.Linear(in_features=2048, out_features=num_classes)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# Entry flow
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.bn2(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.block1(x)
|
||||||
|
# add relu here
|
||||||
|
x = self.relu(x)
|
||||||
|
# c1 = x
|
||||||
|
x = self.block2(x)
|
||||||
|
# c2 = x
|
||||||
|
x = self.block3(x)
|
||||||
|
|
||||||
|
# Middle flow
|
||||||
|
x = self.mid(x)
|
||||||
|
# c3 = x
|
||||||
|
|
||||||
|
# Exit flow
|
||||||
|
x = self.block20(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
x = self.conv3(x)
|
||||||
|
x = self.bn3(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.conv4(x)
|
||||||
|
x = self.bn4(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.conv5(x)
|
||||||
|
x = self.bn5(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.avgpool(x)
|
||||||
|
x = x.view(x.size(0), -1)
|
||||||
|
if self.drop_rate > 0.:
|
||||||
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
||||||
|
x = self.fc(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Xception71(nn.Module):
|
||||||
|
"""Modified Aligned Xception
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, norm_layer=nn.BatchNorm2d,
|
||||||
|
norm_kwargs=None, drop_rate=0., global_pool='avg'):
|
||||||
|
super(Xception71, self).__init__()
|
||||||
|
self.drop_rate = drop_rate
|
||||||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||||||
|
if output_stride == 32:
|
||||||
|
entry_block3_stride = 2
|
||||||
|
exit_block20_stride = 2
|
||||||
|
middle_block_dilation = 1
|
||||||
|
exit_block_dilations = (1, 1)
|
||||||
|
elif output_stride == 16:
|
||||||
|
entry_block3_stride = 2
|
||||||
|
exit_block20_stride = 1
|
||||||
|
middle_block_dilation = 1
|
||||||
|
exit_block_dilations = (1, 2)
|
||||||
|
elif output_stride == 8:
|
||||||
|
entry_block3_stride = 1
|
||||||
|
exit_block20_stride = 1
|
||||||
|
middle_block_dilation = 2
|
||||||
|
exit_block_dilations = (2, 4)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
# Entry flow
|
||||||
|
self.conv1 = nn.Conv2d(in_chans, 32, kernel_size=3, stride=2, padding=1, bias=False)
|
||||||
|
self.bn1 = norm_layer(num_features=32, **norm_kwargs)
|
||||||
|
self.relu = nn.ReLU(inplace=True)
|
||||||
|
|
||||||
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
||||||
|
self.bn2 = norm_layer(num_features=64)
|
||||||
|
|
||||||
|
self.block1 = Block(
|
||||||
|
64, 128, num_reps=2, stride=2, norm_layer=norm_layer,
|
||||||
|
norm_kwargs=norm_kwargs, start_with_relu=False)
|
||||||
|
self.block2 = nn.Sequential(*[
|
||||||
|
Block(
|
||||||
|
128, 256, num_reps=2, stride=1, norm_layer=norm_layer,
|
||||||
|
norm_kwargs=norm_kwargs, start_with_relu=False, grow_first=True),
|
||||||
|
Block(
|
||||||
|
256, 256, num_reps=2, stride=2, norm_layer=norm_layer,
|
||||||
|
norm_kwargs=norm_kwargs, start_with_relu=False, grow_first=True),
|
||||||
|
Block(
|
||||||
|
256, 728, num_reps=2, stride=2, norm_layer=norm_layer,
|
||||||
|
norm_kwargs=norm_kwargs, start_with_relu=False, grow_first=True)])
|
||||||
|
self.block3 = Block(
|
||||||
|
728, 728, num_reps=2, stride=entry_block3_stride, norm_layer=norm_layer,
|
||||||
|
norm_kwargs=norm_kwargs, start_with_relu=True, grow_first=True, is_last=True)
|
||||||
|
|
||||||
|
# Middle flow
|
||||||
|
self.mid = nn.Sequential(OrderedDict([('block%d' % i, Block(
|
||||||
|
728, 728, num_reps=3, stride=1, dilation=middle_block_dilation,
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=True, grow_first=True))
|
||||||
|
for i in range(4, 20)]))
|
||||||
|
|
||||||
|
# Exit flow
|
||||||
|
self.block20 = Block(
|
||||||
|
728, 1024, num_reps=2, stride=exit_block20_stride, dilation=exit_block_dilations[0],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, start_with_relu=True, grow_first=False, is_last=True)
|
||||||
|
|
||||||
|
self.conv3 = SeparableConv2d(
|
||||||
|
1024, 1536, 3, stride=1, dilation=exit_block_dilations[1],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
self.bn3 = norm_layer(num_features=1536, **norm_kwargs)
|
||||||
|
|
||||||
|
self.conv4 = SeparableConv2d(
|
||||||
|
1536, 1536, 3, stride=1, dilation=exit_block_dilations[1],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
self.bn4 = norm_layer(num_features=1536, **norm_kwargs)
|
||||||
|
|
||||||
|
self.conv5 = SeparableConv2d(
|
||||||
|
1536, 2048, 3, stride=1, dilation=exit_block_dilations[1],
|
||||||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||||||
|
self.bn5 = norm_layer(num_features=2048, **norm_kwargs)
|
||||||
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.fc = nn.Linear(in_features=2048, out_features=num_classes)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# Entry flow
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.bn2(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.block1(x)
|
||||||
|
# add relu here
|
||||||
|
x = self.relu(x)
|
||||||
|
# low_level_feat = x
|
||||||
|
x = self.block2(x)
|
||||||
|
# c2 = x
|
||||||
|
x = self.block3(x)
|
||||||
|
|
||||||
|
# Middle flow
|
||||||
|
x = self.mid(x)
|
||||||
|
# c3 = x
|
||||||
|
|
||||||
|
# Exit flow
|
||||||
|
x = self.block20(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
x = self.conv3(x)
|
||||||
|
x = self.bn3(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.conv4(x)
|
||||||
|
x = self.bn4(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.conv5(x)
|
||||||
|
x = self.bn5(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
|
||||||
|
x = self.avgpool(x)
|
||||||
|
x = x.view(x.size(0), -1)
|
||||||
|
if self.drop_rate > 0.:
|
||||||
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
||||||
|
x = self.fc(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def gluon_xception65(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
|
default_cfg = default_cfgs['gluon_xception65']
|
||||||
|
model = Xception65(num_classes=num_classes, in_chans=in_chans, **kwargs)
|
||||||
|
model.default_cfg = default_cfg
|
||||||
|
if pretrained:
|
||||||
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def gluon_xception71(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
|
default_cfg = default_cfgs['gluon_xception71']
|
||||||
|
model = Xception71(num_classes=num_classes, in_chans=in_chans, **kwargs)
|
||||||
|
model.default_cfg = default_cfg
|
||||||
|
if pretrained:
|
||||||
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
|
return model
|
||||||
|
|
Loading…
Reference in new issue