Add updated vit_relpos weights, and impl w/ support for official swin-v2 differences for relpos. Add bias control support for MLP layers

pull/1259/head
Ross Wightman 3 years ago
parent d4c0588012
commit 4b30bae67b

@ -10,16 +10,17 @@ from .helpers import to_2tuple
class Mlp(nn.Module): class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks """ MLP as used in Vision Transformer, MLP-Mixer and related networks
""" """
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.):
super().__init__() super().__init__()
out_features = out_features or in_features out_features = out_features or in_features
hidden_features = hidden_features or in_features hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop) drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer() self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0]) self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1]) self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x): def forward(self, x):
@ -35,17 +36,18 @@ class GluMlp(nn.Module):
""" MLP w/ GLU style gating """ MLP w/ GLU style gating
See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202 See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202
""" """
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.Sigmoid, drop=0.): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.Sigmoid, bias=True, drop=0.):
super().__init__() super().__init__()
out_features = out_features or in_features out_features = out_features or in_features
hidden_features = hidden_features or in_features hidden_features = hidden_features or in_features
assert hidden_features % 2 == 0 assert hidden_features % 2 == 0
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop) drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer() self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0]) self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features // 2, out_features) self.fc2 = nn.Linear(hidden_features // 2, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1]) self.drop2 = nn.Dropout(drop_probs[1])
def init_weights(self): def init_weights(self):
@ -67,14 +69,16 @@ class GluMlp(nn.Module):
class GatedMlp(nn.Module): class GatedMlp(nn.Module):
""" MLP as used in gMLP """ MLP as used in gMLP
""" """
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, def __init__(
gate_layer=None, drop=0.): self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
gate_layer=None, bias=True, drop=0.):
super().__init__() super().__init__()
out_features = out_features or in_features out_features = out_features or in_features
hidden_features = hidden_features or in_features hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop) drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer() self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0]) self.drop1 = nn.Dropout(drop_probs[0])
if gate_layer is not None: if gate_layer is not None:
@ -83,7 +87,7 @@ class GatedMlp(nn.Module):
hidden_features = hidden_features // 2 # FIXME base reduction on gate property? hidden_features = hidden_features // 2 # FIXME base reduction on gate property?
else: else:
self.gate = nn.Identity() self.gate = nn.Identity()
self.fc2 = nn.Linear(hidden_features, out_features) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1]) self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x): def forward(self, x):
@ -100,15 +104,18 @@ class ConvMlp(nn.Module):
""" MLP using 1x1 convs that keeps spatial dims """ MLP using 1x1 convs that keeps spatial dims
""" """
def __init__( def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, drop=0.): self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,
norm_layer=None, bias=True, drop=0.):
super().__init__() super().__init__()
out_features = out_features or in_features out_features = out_features or in_features
hidden_features = hidden_features or in_features hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True) bias = to_2tuple(bias)
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
self.act = act_layer() self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True)
self.drop = nn.Dropout(drop) self.drop = nn.Dropout(drop)
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])
def forward(self, x): def forward(self, x):
x = self.fc1(x) x = self.fc1(x)

@ -450,7 +450,7 @@ class BasicLayer(nn.Module):
def forward(self, x): def forward(self, x):
for blk in self.blocks: for blk in self.blocks:
if not torch.jit.is_scripting() and self.grad_checkpointing: if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint.checkpoint(blk, x) x = checkpoint.checkpoint(blk, x)
else: else:
x = blk(x) x = blk(x)

@ -1,5 +1,7 @@
""" Relative Position Vision Transformer (ViT) in PyTorch """ Relative Position Vision Transformer (ViT) in PyTorch
NOTE: these models are experimental / WIP, expect changes
Hacked together by / Copyright 2022, Ross Wightman Hacked together by / Copyright 2022, Ross Wightman
""" """
import math import math
@ -37,9 +39,23 @@ default_cfgs = {
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth',
input_size=(3, 256, 256)), input_size=(3, 256, 256)),
'vit_relpos_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240)), 'vit_relpos_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240)),
'vit_relpos_base_patch16_rpn_224': _cfg(url=''),
'vit_relpos_small_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_small_patch16_224-sw-ec2778b4.pth'),
'vit_relpos_medium_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_224-sw-11c174af.pth'),
'vit_relpos_base_patch16_224': _cfg( 'vit_relpos_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth'),
'vit_relpos_base_patch16_cls_224': _cfg(
url=''),
'vit_relpos_base_patch16_gapcls_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth'),
'vit_relpos_small_patch16_rpn_224': _cfg(url=''),
'vit_relpos_medium_patch16_rpn_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth'),
'vit_relpos_base_patch16_rpn_224': _cfg(url=''),
} }
@ -66,43 +82,84 @@ def gen_relative_position_index(win_size: Tuple[int, int], class_token: int = 0)
return relative_position_index return relative_position_index
def gen_relative_position_log(win_size: Tuple[int, int]) -> torch.Tensor: def gen_relative_log_coords(
"""Method initializes the pair-wise relative positions to compute the positional biases.""" win_size: Tuple[int, int],
coordinates = torch.stack(torch.meshgrid([torch.arange(win_size[0]), torch.arange(win_size[1])])).flatten(1) pretrained_win_size: Tuple[int, int] = (0, 0),
relative_coords = coordinates[:, :, None] - coordinates[:, None, :] mode='swin'
relative_coords = relative_coords.permute(1, 2, 0).float() ):
relative_coordinates_log = torch.sign(relative_coords) * torch.log(1.0 + relative_coords.abs()) # as per official swin-v2 impl, supporting timm swin-v2-cr coords as well
return relative_coordinates_log relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous() # 2*Wh-1, 2*Ww-1, 2
if mode == 'swin':
if pretrained_win_size[0] > 0:
relative_coords_table[:, :, 0] /= (pretrained_win_size[0] - 1)
relative_coords_table[:, :, 1] /= (pretrained_win_size[1] - 1)
else:
relative_coords_table[:, :, 0] /= (win_size[0] - 1)
relative_coords_table[:, :, 1] /= (win_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
scale = math.log2(8)
else:
# FIXME we should support a form of normalization (to -1/1) for this mode?
scale = math.log2(math.e)
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1.0 + relative_coords_table.abs()) / scale
return relative_coords_table
class RelPosMlp(nn.Module): class RelPosMlp(nn.Module):
# based on timm swin-v2 impl def __init__(
def __init__(self, window_size, num_heads=8, hidden_dim=32, class_token=False): self,
window_size,
num_heads=8,
hidden_dim=128,
class_token=False,
mode='cr',
pretrained_window_size=(0, 0)
):
super().__init__() super().__init__()
self.window_size = window_size self.window_size = window_size
self.window_area = self.window_size[0] * self.window_size[1] self.window_area = self.window_size[0] * self.window_size[1]
self.class_token = 1 if class_token else 0 self.class_token = 1 if class_token else 0
self.num_heads = num_heads self.num_heads = num_heads
self.bias_shape = (self.window_area,) * 2 + (num_heads,)
self.apply_sigmoid = mode == 'swin'
mlp_bias = (True, False) if mode == 'swin' else True
self.mlp = Mlp( self.mlp = Mlp(
2, # x, y 2, # x, y
hidden_features=min(128, hidden_dim * num_heads), hidden_features=hidden_dim,
out_features=num_heads, out_features=num_heads,
act_layer=nn.ReLU, act_layer=nn.ReLU,
bias=mlp_bias,
drop=(0.125, 0.) drop=(0.125, 0.)
) )
self.register_buffer( self.register_buffer(
'rel_coords_log', "relative_position_index",
gen_relative_position_log(window_size), gen_relative_position_index(window_size),
persistent=False persistent=False)
)
# get relative_coords_table
self.register_buffer(
"rel_coords_log",
gen_relative_log_coords(window_size, pretrained_window_size, mode=mode),
persistent=False)
def get_bias(self) -> torch.Tensor: def get_bias(self) -> torch.Tensor:
relative_position_bias = self.mlp(self.rel_coords_log).permute(2, 0, 1).unsqueeze(0) relative_position_bias = self.mlp(self.rel_coords_log)
if self.relative_position_index is not None:
relative_position_bias = relative_position_bias.view(-1, self.num_heads)[
self.relative_position_index.view(-1)] # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.view(self.bias_shape)
relative_position_bias = relative_position_bias.permute(2, 0, 1)
if self.apply_sigmoid:
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
if self.class_token: if self.class_token:
relative_position_bias = F.pad(relative_position_bias, [self.class_token, 0, self.class_token, 0]) relative_position_bias = F.pad(relative_position_bias, [self.class_token, 0, self.class_token, 0])
return relative_position_bias return relative_position_bias.unsqueeze(0).contiguous()
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
return attn + self.get_bias() return attn + self.get_bias()
@ -131,10 +188,10 @@ class RelPosBias(nn.Module):
trunc_normal_(self.relative_position_bias_table, std=.02) trunc_normal_(self.relative_position_bias_table, std=.02)
def get_bias(self) -> torch.Tensor: def get_bias(self) -> torch.Tensor:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
self.bias_shape) # win_h * win_w, win_h * win_w, num_heads # win_h * win_w, win_h * win_w, num_heads
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1)
return relative_position_bias return relative_position_bias.unsqueeze(0).contiguous()
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
return attn + self.get_bias() return attn + self.get_bias()
@ -250,8 +307,8 @@ class VisionTransformerRelPos(nn.Module):
def __init__( def __init__(
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg', self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg',
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=1e-5, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=1e-6,
class_token=False, rel_pos_type='mlp', shared_rel_pos=False, fc_norm=False, class_token=False, fc_norm=False, rel_pos_type='mlp', shared_rel_pos=False, rel_pos_dim=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='skip', drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='skip',
embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=RelPosBlock): embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=RelPosBlock):
""" """
@ -268,9 +325,9 @@ class VisionTransformerRelPos(nn.Module):
qkv_bias (bool): enable bias for qkv if True qkv_bias (bool): enable bias for qkv if True
init_values: (float): layer-scale init values init_values: (float): layer-scale init values
class_token (bool): use class token (default: False) class_token (bool): use class token (default: False)
fc_norm (bool): use pre classifier norm instead of pre-pool
rel_pos_ty pe (str): type of relative position rel_pos_ty pe (str): type of relative position
shared_rel_pos (bool): share relative pos across all blocks shared_rel_pos (bool): share relative pos across all blocks
fc_norm (bool): use pre classifier norm instead of pre-pool
drop_rate (float): dropout rate drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate drop_path_rate (float): stochastic depth rate
@ -295,8 +352,15 @@ class VisionTransformerRelPos(nn.Module):
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
feat_size = self.patch_embed.grid_size feat_size = self.patch_embed.grid_size
rel_pos_cls = RelPosMlp if rel_pos_type == 'mlp' else RelPosBias rel_pos_args = dict(window_size=feat_size, class_token=class_token)
rel_pos_cls = partial(rel_pos_cls, window_size=feat_size, class_token=class_token) if rel_pos_type.startswith('mlp'):
if rel_pos_dim:
rel_pos_args['hidden_dim'] = rel_pos_dim
if 'swin' in rel_pos_type:
rel_pos_args['mode'] = 'swin'
rel_pos_cls = partial(RelPosMlp, **rel_pos_args)
else:
rel_pos_cls = partial(RelPosBias, **rel_pos_args)
self.shared_rel_pos = None self.shared_rel_pos = None
if shared_rel_pos: if shared_rel_pos:
self.shared_rel_pos = rel_pos_cls(num_heads=num_heads) self.shared_rel_pos = rel_pos_cls(num_heads=num_heads)
@ -408,6 +472,26 @@ def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs):
return model return model
@register_model
def vit_relpos_small_patch16_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
"""
model_kwargs = dict(
patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=True, **kwargs)
model = _create_vision_transformer_relpos('vit_relpos_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_relpos_medium_patch16_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
"""
model_kwargs = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=True, **kwargs)
model = _create_vision_transformer_relpos('vit_relpos_medium_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model @register_model
def vit_relpos_base_patch16_224(pretrained=False, **kwargs): def vit_relpos_base_patch16_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position, no class token """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
@ -418,11 +502,57 @@ def vit_relpos_base_patch16_224(pretrained=False, **kwargs):
return model return model
@register_model
def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
"""
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False,
class_token=True, global_pool='token', **kwargs)
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_cls_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_relpos_base_patch16_gapcls_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled
Leaving here for comparisons w/ a future re-train as it performs quite well.
"""
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True, **kwargs)
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_gapcls_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_relpos_small_patch16_rpn_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
"""
model_kwargs = dict(
patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, block_fn=ResPostRelPosBlock, **kwargs)
model = _create_vision_transformer_relpos(
'vit_relpos_small_patch16_rpn_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_relpos_medium_patch16_rpn_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
"""
model_kwargs = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, block_fn=ResPostRelPosBlock, **kwargs)
model = _create_vision_transformer_relpos(
'vit_relpos_medium_patch16_rpn_224', pretrained=pretrained, **model_kwargs)
return model
@register_model @register_model
def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs): def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
""" """
model_kwargs = dict( model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock, **kwargs) patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock, **kwargs)
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs) model = _create_vision_transformer_relpos(
'vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs)
return model return model

Loading…
Cancel
Save