Merge pull request #1354 from rwightman/fix_tests

Attempting to fix unit test failures...
pull/1363/head
Ross Wightman 2 years ago committed by GitHub
commit 4547920f85
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -4,6 +4,8 @@ import platform
import os
import fnmatch
_IS_MAC = platform.system() == 'Darwin'
try:
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
has_fx_feature_extraction = True
@ -322,157 +324,160 @@ def test_model_forward_features(model_name, batch_size):
assert not torch.isnan(o).any()
def _create_fx_model(model, train=False):
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
tracer_kwargs = dict(
leaf_modules=list(_leaf_modules),
autowrap_functions=list(_autowrap_functions),
#enable_cpatching=True,
param_shapes_constant=True
)
train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
eval_return_nodes = [eval_nodes[-1]]
train_return_nodes = [train_nodes[-1]]
if train:
tracer = NodePathTracer(**tracer_kwargs)
graph = tracer.trace(model)
graph_nodes = list(reversed(graph.nodes))
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
graph_node_names = [n.name for n in graph_nodes]
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
fx_model = create_feature_extractor(
model,
train_return_nodes=train_return_nodes,
eval_return_nodes=eval_return_nodes,
tracer_kwargs=tracer_kwargs,
)
return fx_model
EXCLUDE_FX_FILTERS = ['vit_gi*']
# not enough memory to run fx on more models than other tests
if 'GITHUB_ACTIONS' in os.environ:
EXCLUDE_FX_FILTERS += [
'beit_large*',
'mixer_l*',
'*nfnet_f2*',
'*resnext101_32x32d',
'resnetv2_152x2*',
'resmlp_big*',
'resnetrs270',
'swin_large*',
'vgg*',
'vit_large*',
'vit_base_patch8*',
'xcit_large*',
]
if not _IS_MAC:
# MACOS test runners are really slow, only running tests below this point if not on a Darwin runner...
def _create_fx_model(model, train=False):
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
tracer_kwargs = dict(
leaf_modules=list(_leaf_modules),
autowrap_functions=list(_autowrap_functions),
#enable_cpatching=True,
param_shapes_constant=True
)
train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
eval_return_nodes = [eval_nodes[-1]]
train_return_nodes = [train_nodes[-1]]
if train:
tracer = NodePathTracer(**tracer_kwargs)
graph = tracer.trace(model)
graph_nodes = list(reversed(graph.nodes))
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
graph_node_names = [n.name for n in graph_nodes]
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
fx_model = create_feature_extractor(
model,
train_return_nodes=train_return_nodes,
eval_return_nodes=eval_return_nodes,
tracer_kwargs=tracer_kwargs,
)
return fx_model
EXCLUDE_FX_FILTERS = ['vit_gi*']
# not enough memory to run fx on more models than other tests
if 'GITHUB_ACTIONS' in os.environ:
EXCLUDE_FX_FILTERS += [
'beit_large*',
'mixer_l*',
'*nfnet_f2*',
'*resnext101_32x32d',
'resnetv2_152x2*',
'resmlp_big*',
'resnetrs270',
'swin_large*',
'vgg*',
'vit_large*',
'vit_base_patch8*',
'xcit_large*',
]
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx(model_name, batch_size):
"""
Symbolically trace each model and run single forward pass through the resulting GraphModule
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx(model_name, batch_size):
"""
Symbolically trace each model and run single forward pass through the resulting GraphModule
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
model = create_model(model_name, pretrained=False)
model.eval()
model = create_model(model_name, pretrained=False)
model.eval()
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
if max(input_size) > MAX_FWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
with torch.no_grad():
inputs = torch.randn((batch_size, *input_size))
outputs = model(inputs)
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
if max(input_size) > MAX_FWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
with torch.no_grad():
inputs = torch.randn((batch_size, *input_size))
outputs = model(inputs)
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
model = _create_fx_model(model)
fx_outputs = tuple(model(inputs).values())
if isinstance(fx_outputs, tuple):
fx_outputs = torch.cat(fx_outputs)
model = _create_fx_model(model)
fx_outputs = tuple(model(inputs).values())
if isinstance(fx_outputs, tuple):
fx_outputs = torch.cat(fx_outputs)
assert torch.all(fx_outputs == outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
assert torch.all(fx_outputs == outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward_fx(model_name, batch_size):
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward_fx(model_name, batch_size):
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
if max(input_size) > MAX_BWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
if max(input_size) > MAX_BWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
model = create_model(model_name, pretrained=False, num_classes=42)
model.train()
num_params = sum([x.numel() for x in model.parameters()])
if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
pytest.skip("Skipping FX backward test on model with more than 100M params.")
model = create_model(model_name, pretrained=False, num_classes=42)
model.train()
num_params = sum([x.numel() for x in model.parameters()])
if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
pytest.skip("Skipping FX backward test on model with more than 100M params.")
model = _create_fx_model(model, train=True)
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
outputs.mean().backward()
for n, x in model.named_parameters():
assert x.grad is not None, f'No gradient for {n}'
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
model = _create_fx_model(model, train=True)
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
outputs.mean().backward()
for n, x in model.named_parameters():
assert x.grad is not None, f'No gradient for {n}'
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
assert outputs.shape[-1] == 42
assert num_params == num_grad, 'Some parameters are missing gradients'
assert not torch.isnan(outputs).any(), 'Output included NaNs'
assert outputs.shape[-1] == 42
assert num_params == num_grad, 'Some parameters are missing gradients'
assert not torch.isnan(outputs).any(), 'Output included NaNs'
if 'GITHUB_ACTIONS' not in os.environ:
# FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process
if 'GITHUB_ACTIONS' not in os.environ:
# FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
EXCLUDE_FX_JIT_FILTERS = [
'deit_*_distilled_patch16_224',
'levit*',
'pit_*_distilled_224',
] + EXCLUDE_FX_FILTERS
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
EXCLUDE_FX_JIT_FILTERS = [
'deit_*_distilled_patch16_224',
'levit*',
'pit_*_distilled_224',
] + EXCLUDE_FX_FILTERS
@pytest.mark.timeout(120)
@pytest.mark.parametrize(
'model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx_torchscript(model_name, batch_size):
"""Symbolically trace each model, script it, and run single forward pass"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
@pytest.mark.timeout(120)
@pytest.mark.parametrize(
'model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx_torchscript(model_name, batch_size):
"""Symbolically trace each model, script it, and run single forward pass"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
if max(input_size) > MAX_JIT_SIZE:
pytest.skip("Fixed input size model > limit.")
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
if max(input_size) > MAX_JIT_SIZE:
pytest.skip("Fixed input size model > limit.")
with set_scriptable(True):
model = create_model(model_name, pretrained=False)
model.eval()
with set_scriptable(True):
model = create_model(model_name, pretrained=False)
model.eval()
model = torch.jit.script(_create_fx_model(model))
with torch.no_grad():
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
model = torch.jit.script(_create_fx_model(model))
with torch.no_grad():
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'

Loading…
Cancel
Save