|
|
@ -4,6 +4,8 @@ import platform
|
|
|
|
import os
|
|
|
|
import os
|
|
|
|
import fnmatch
|
|
|
|
import fnmatch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_IS_MAC = platform.system() == 'Darwin'
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
|
|
|
|
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
|
|
|
|
has_fx_feature_extraction = True
|
|
|
|
has_fx_feature_extraction = True
|
|
|
@ -322,157 +324,160 @@ def test_model_forward_features(model_name, batch_size):
|
|
|
|
assert not torch.isnan(o).any()
|
|
|
|
assert not torch.isnan(o).any()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_fx_model(model, train=False):
|
|
|
|
if not _IS_MAC:
|
|
|
|
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
|
|
|
|
# MACOS test runners are really slow, only running tests below this point if not on a Darwin runner...
|
|
|
|
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
|
|
|
|
|
|
|
|
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
|
|
|
|
def _create_fx_model(model, train=False):
|
|
|
|
tracer_kwargs = dict(
|
|
|
|
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
|
|
|
|
leaf_modules=list(_leaf_modules),
|
|
|
|
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
|
|
|
|
autowrap_functions=list(_autowrap_functions),
|
|
|
|
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
|
|
|
|
#enable_cpatching=True,
|
|
|
|
tracer_kwargs = dict(
|
|
|
|
param_shapes_constant=True
|
|
|
|
leaf_modules=list(_leaf_modules),
|
|
|
|
)
|
|
|
|
autowrap_functions=list(_autowrap_functions),
|
|
|
|
train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
|
|
|
|
#enable_cpatching=True,
|
|
|
|
|
|
|
|
param_shapes_constant=True
|
|
|
|
eval_return_nodes = [eval_nodes[-1]]
|
|
|
|
)
|
|
|
|
train_return_nodes = [train_nodes[-1]]
|
|
|
|
train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
|
|
|
|
if train:
|
|
|
|
|
|
|
|
tracer = NodePathTracer(**tracer_kwargs)
|
|
|
|
eval_return_nodes = [eval_nodes[-1]]
|
|
|
|
graph = tracer.trace(model)
|
|
|
|
train_return_nodes = [train_nodes[-1]]
|
|
|
|
graph_nodes = list(reversed(graph.nodes))
|
|
|
|
if train:
|
|
|
|
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
|
|
|
|
tracer = NodePathTracer(**tracer_kwargs)
|
|
|
|
graph_node_names = [n.name for n in graph_nodes]
|
|
|
|
graph = tracer.trace(model)
|
|
|
|
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
|
|
|
|
graph_nodes = list(reversed(graph.nodes))
|
|
|
|
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
|
|
|
|
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
|
|
|
|
|
|
|
|
graph_node_names = [n.name for n in graph_nodes]
|
|
|
|
fx_model = create_feature_extractor(
|
|
|
|
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
|
|
|
|
model,
|
|
|
|
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
|
|
|
|
train_return_nodes=train_return_nodes,
|
|
|
|
|
|
|
|
eval_return_nodes=eval_return_nodes,
|
|
|
|
fx_model = create_feature_extractor(
|
|
|
|
tracer_kwargs=tracer_kwargs,
|
|
|
|
model,
|
|
|
|
)
|
|
|
|
train_return_nodes=train_return_nodes,
|
|
|
|
return fx_model
|
|
|
|
eval_return_nodes=eval_return_nodes,
|
|
|
|
|
|
|
|
tracer_kwargs=tracer_kwargs,
|
|
|
|
|
|
|
|
)
|
|
|
|
EXCLUDE_FX_FILTERS = ['vit_gi*']
|
|
|
|
return fx_model
|
|
|
|
# not enough memory to run fx on more models than other tests
|
|
|
|
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ:
|
|
|
|
|
|
|
|
EXCLUDE_FX_FILTERS += [
|
|
|
|
EXCLUDE_FX_FILTERS = ['vit_gi*']
|
|
|
|
'beit_large*',
|
|
|
|
# not enough memory to run fx on more models than other tests
|
|
|
|
'mixer_l*',
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ:
|
|
|
|
'*nfnet_f2*',
|
|
|
|
EXCLUDE_FX_FILTERS += [
|
|
|
|
'*resnext101_32x32d',
|
|
|
|
'beit_large*',
|
|
|
|
'resnetv2_152x2*',
|
|
|
|
'mixer_l*',
|
|
|
|
'resmlp_big*',
|
|
|
|
'*nfnet_f2*',
|
|
|
|
'resnetrs270',
|
|
|
|
'*resnext101_32x32d',
|
|
|
|
'swin_large*',
|
|
|
|
'resnetv2_152x2*',
|
|
|
|
'vgg*',
|
|
|
|
'resmlp_big*',
|
|
|
|
'vit_large*',
|
|
|
|
'resnetrs270',
|
|
|
|
'vit_base_patch8*',
|
|
|
|
'swin_large*',
|
|
|
|
'xcit_large*',
|
|
|
|
'vgg*',
|
|
|
|
]
|
|
|
|
'vit_large*',
|
|
|
|
|
|
|
|
'vit_base_patch8*',
|
|
|
|
|
|
|
|
'xcit_large*',
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward_fx(model_name, batch_size):
|
|
|
|
def test_model_forward_fx(model_name, batch_size):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Symbolically trace each model and run single forward pass through the resulting GraphModule
|
|
|
|
Symbolically trace each model and run single forward pass through the resulting GraphModule
|
|
|
|
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
|
|
|
|
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
|
|
|
|
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
|
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
|
|
|
|
if max(input_size) > MAX_FWD_FX_SIZE:
|
|
|
|
if max(input_size) > MAX_FWD_FX_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
with torch.no_grad():
|
|
|
|
with torch.no_grad():
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
inputs = torch.randn((batch_size, *input_size))
|
|
|
|
outputs = model(inputs)
|
|
|
|
outputs = model(inputs)
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
model = _create_fx_model(model)
|
|
|
|
model = _create_fx_model(model)
|
|
|
|
fx_outputs = tuple(model(inputs).values())
|
|
|
|
fx_outputs = tuple(model(inputs).values())
|
|
|
|
if isinstance(fx_outputs, tuple):
|
|
|
|
if isinstance(fx_outputs, tuple):
|
|
|
|
fx_outputs = torch.cat(fx_outputs)
|
|
|
|
fx_outputs = torch.cat(fx_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
assert torch.all(fx_outputs == outputs)
|
|
|
|
assert torch.all(fx_outputs == outputs)
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(
|
|
|
|
@pytest.mark.parametrize('model_name', list_models(
|
|
|
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
|
|
|
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
|
|
|
|
@pytest.mark.parametrize('batch_size', [2])
|
|
|
|
@pytest.mark.parametrize('batch_size', [2])
|
|
|
|
def test_model_backward_fx(model_name, batch_size):
|
|
|
|
def test_model_backward_fx(model_name, batch_size):
|
|
|
|
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
|
|
|
|
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
|
|
|
|
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
|
|
|
|
if max(input_size) > MAX_BWD_FX_SIZE:
|
|
|
|
if max(input_size) > MAX_BWD_FX_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42)
|
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42)
|
|
|
|
model.train()
|
|
|
|
model.train()
|
|
|
|
num_params = sum([x.numel() for x in model.parameters()])
|
|
|
|
num_params = sum([x.numel() for x in model.parameters()])
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
|
|
|
|
pytest.skip("Skipping FX backward test on model with more than 100M params.")
|
|
|
|
pytest.skip("Skipping FX backward test on model with more than 100M params.")
|
|
|
|
|
|
|
|
|
|
|
|
model = _create_fx_model(model, train=True)
|
|
|
|
model = _create_fx_model(model, train=True)
|
|
|
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
|
|
|
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
outputs.mean().backward()
|
|
|
|
outputs.mean().backward()
|
|
|
|
for n, x in model.named_parameters():
|
|
|
|
for n, x in model.named_parameters():
|
|
|
|
assert x.grad is not None, f'No gradient for {n}'
|
|
|
|
assert x.grad is not None, f'No gradient for {n}'
|
|
|
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
|
|
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
|
|
|
|
|
|
|
|
|
|
|
|
assert outputs.shape[-1] == 42
|
|
|
|
assert outputs.shape[-1] == 42
|
|
|
|
assert num_params == num_grad, 'Some parameters are missing gradients'
|
|
|
|
assert num_params == num_grad, 'Some parameters are missing gradients'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'GITHUB_ACTIONS' not in os.environ:
|
|
|
|
if 'GITHUB_ACTIONS' not in os.environ:
|
|
|
|
# FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process
|
|
|
|
# FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process
|
|
|
|
|
|
|
|
|
|
|
|
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
|
|
|
|
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
|
|
|
|
EXCLUDE_FX_JIT_FILTERS = [
|
|
|
|
EXCLUDE_FX_JIT_FILTERS = [
|
|
|
|
'deit_*_distilled_patch16_224',
|
|
|
|
'deit_*_distilled_patch16_224',
|
|
|
|
'levit*',
|
|
|
|
'levit*',
|
|
|
|
'pit_*_distilled_224',
|
|
|
|
'pit_*_distilled_224',
|
|
|
|
] + EXCLUDE_FX_FILTERS
|
|
|
|
] + EXCLUDE_FX_FILTERS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.timeout(120)
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
'model_name', list_models(
|
|
|
|
'model_name', list_models(
|
|
|
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
|
|
|
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
@pytest.mark.parametrize('batch_size', [1])
|
|
|
|
def test_model_forward_fx_torchscript(model_name, batch_size):
|
|
|
|
def test_model_forward_fx_torchscript(model_name, batch_size):
|
|
|
|
"""Symbolically trace each model, script it, and run single forward pass"""
|
|
|
|
"""Symbolically trace each model, script it, and run single forward pass"""
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
if not has_fx_feature_extraction:
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
|
|
|
|
|
|
|
|
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
|
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
|
|
|
|
if max(input_size) > MAX_JIT_SIZE:
|
|
|
|
if max(input_size) > MAX_JIT_SIZE:
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
pytest.skip("Fixed input size model > limit.")
|
|
|
|
|
|
|
|
|
|
|
|
with set_scriptable(True):
|
|
|
|
with set_scriptable(True):
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model = create_model(model_name, pretrained=False)
|
|
|
|
model.eval()
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
model = torch.jit.script(_create_fx_model(model))
|
|
|
|
model = torch.jit.script(_create_fx_model(model))
|
|
|
|
with torch.no_grad():
|
|
|
|
with torch.no_grad():
|
|
|
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
|
|
|
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
if isinstance(outputs, tuple):
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
outputs = torch.cat(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert outputs.shape[0] == batch_size
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|
assert not torch.isnan(outputs).any(), 'Output included NaNs'
|
|
|
|