|
|
@ -208,6 +208,7 @@ class InferenceBenchmarkRunner(BenchmarkRunner):
|
|
|
|
samples_per_sec=round(num_samples / t_run_elapsed, 2),
|
|
|
|
samples_per_sec=round(num_samples / t_run_elapsed, 2),
|
|
|
|
step_time=round(1000 * total_step / num_samples, 3),
|
|
|
|
step_time=round(1000 * total_step / num_samples, 3),
|
|
|
|
batch_size=self.batch_size,
|
|
|
|
batch_size=self.batch_size,
|
|
|
|
|
|
|
|
img_size=self.input_size[-1],
|
|
|
|
param_count=round(self.param_count / 1e6, 2),
|
|
|
|
param_count=round(self.param_count / 1e6, 2),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
@ -310,6 +311,7 @@ class TrainBenchmarkRunner(BenchmarkRunner):
|
|
|
|
bwd_time=round(1000 * total_bwd / num_samples, 3),
|
|
|
|
bwd_time=round(1000 * total_bwd / num_samples, 3),
|
|
|
|
opt_time=round(1000 * total_opt / num_samples, 3),
|
|
|
|
opt_time=round(1000 * total_opt / num_samples, 3),
|
|
|
|
batch_size=self.batch_size,
|
|
|
|
batch_size=self.batch_size,
|
|
|
|
|
|
|
|
img_size=self.input_size[-1],
|
|
|
|
param_count=round(self.param_count / 1e6, 2),
|
|
|
|
param_count=round(self.param_count / 1e6, 2),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|