Adding RandAugment to AutoAugment impl, some tweaks to AA included

pull/52/head
Ross Wightman 5 years ago
parent 4748c6dff2
commit 4243f076f1

@ -4,3 +4,5 @@ from .dataset import Dataset, DatasetTar
from .transforms import * from .transforms import *
from .loader import create_loader, create_transform from .loader import create_loader, create_transform
from .mixup import mixup_target, FastCollateMixup from .mixup import mixup_target, FastCollateMixup
from .auto_augment import RandAugment, AutoAugment, rand_augment_ops, auto_augment_policy,\
rand_augment_transform, auto_augment_transform

@ -7,11 +7,13 @@ Hacked together by Ross Wightman
""" """
import random import random
import math import math
import re
from PIL import Image, ImageOps, ImageEnhance from PIL import Image, ImageOps, ImageEnhance
import PIL import PIL
import numpy as np import numpy as np
_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]]) _PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]])
_FILL = (128, 128, 128) _FILL = (128, 128, 128)
@ -25,11 +27,11 @@ _HPARAMS_DEFAULT = dict(
img_mean=_FILL, img_mean=_FILL,
) )
_RANDOM_INTERPOLATION = (Image.NEAREST, Image.BILINEAR, Image.BICUBIC) _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
def _interpolation(kwargs): def _interpolation(kwargs):
interpolation = kwargs.pop('resample', Image.NEAREST) interpolation = kwargs.pop('resample', Image.BILINEAR)
if isinstance(interpolation, (list, tuple)): if isinstance(interpolation, (list, tuple)):
return random.choice(interpolation) return random.choice(interpolation)
else: else:
@ -140,7 +142,6 @@ def solarize_add(img, add, thresh=128, **__):
def posterize(img, bits_to_keep, **__): def posterize(img, bits_to_keep, **__):
if bits_to_keep >= 8: if bits_to_keep >= 8:
return img return img
bits_to_keep = max(1, bits_to_keep) # prevent all 0 images
return ImageOps.posterize(img, bits_to_keep) return ImageOps.posterize(img, bits_to_keep)
@ -165,61 +166,89 @@ def _randomly_negate(v):
return -v if random.random() > 0.5 else v return -v if random.random() > 0.5 else v
def _rotate_level_to_arg(level): def _rotate_level_to_arg(level, _hparams):
# range [-30, 30] # range [-30, 30]
level = (level / _MAX_LEVEL) * 30. level = (level / _MAX_LEVEL) * 30.
level = _randomly_negate(level) level = _randomly_negate(level)
return (level,) return level,
def _enhance_level_to_arg(level): def _enhance_level_to_arg(level, _hparams):
# range [0.1, 1.9] # range [0.1, 1.9]
return ((level / _MAX_LEVEL) * 1.8 + 0.1,) return (level / _MAX_LEVEL) * 1.8 + 0.1,
def _shear_level_to_arg(level): def _shear_level_to_arg(level, _hparams):
# range [-0.3, 0.3] # range [-0.3, 0.3]
level = (level / _MAX_LEVEL) * 0.3 level = (level / _MAX_LEVEL) * 0.3
level = _randomly_negate(level) level = _randomly_negate(level)
return (level,) return level,
def _translate_abs_level_to_arg(level, translate_const): def _translate_abs_level_to_arg(level, hparams):
translate_const = hparams['translate_const']
level = (level / _MAX_LEVEL) * float(translate_const) level = (level / _MAX_LEVEL) * float(translate_const)
level = _randomly_negate(level) level = _randomly_negate(level)
return (level,) return level,
def _translate_rel_level_to_arg(level): def _translate_rel_level_to_arg(level, _hparams):
# range [-0.45, 0.45] # range [-0.45, 0.45]
level = (level / _MAX_LEVEL) * 0.45 level = (level / _MAX_LEVEL) * 0.45
level = _randomly_negate(level) level = _randomly_negate(level)
return (level,) return level,
def _posterize_original_level_to_arg(level, _hparams):
# As per original AutoAugment paper description
# range [4, 8], 'keep 4 up to 8 MSB of image'
return int((level / _MAX_LEVEL) * 4) + 4,
def _posterize_research_level_to_arg(level, _hparams):
# As per Tensorflow models research and UDA impl
# range [4, 0], 'keep 4 down to 0 MSB of original image'
return 4 - int((level / _MAX_LEVEL) * 4),
def _posterize_tpu_level_to_arg(level, _hparams):
# As per Tensorflow TPU EfficientNet impl
# range [0, 4], 'keep 0 up to 4 MSB of original image'
return int((level / _MAX_LEVEL) * 4),
def _solarize_level_to_arg(level, _hparams):
# range [0, 256]
return int((level / _MAX_LEVEL) * 256),
def _solarize_add_level_to_arg(level, _hparams):
# range [0, 110]
return int((level / _MAX_LEVEL) * 110),
def level_to_arg(hparams):
return { LEVEL_TO_ARG = {
'AutoContrast': lambda level: (), 'AutoContrast': None,
'Equalize': lambda level: (), 'Equalize': None,
'Invert': lambda level: (), 'Invert': None,
'Rotate': _rotate_level_to_arg, 'Rotate': _rotate_level_to_arg,
# FIXME these are both different from original impl as I believe there is a bug, # There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
# not sure what is the correct alternative, hence 2 options that look better 'PosterizeOriginal': _posterize_original_level_to_arg,
'Posterize': lambda level: (int((level / _MAX_LEVEL) * 4) + 4,), # range [4, 8] 'PosterizeResearch': _posterize_research_level_to_arg,
'Posterize2': lambda level: (4 - int((level / _MAX_LEVEL) * 4),), # range [4, 0] 'PosterizeTpu': _posterize_tpu_level_to_arg,
'Solarize': lambda level: (int((level / _MAX_LEVEL) * 256),), # range [0, 256] 'Solarize': _solarize_level_to_arg,
'SolarizeAdd': lambda level: (int((level / _MAX_LEVEL) * 110),), # range [0, 110] 'SolarizeAdd': _solarize_add_level_to_arg,
'Color': _enhance_level_to_arg, 'Color': _enhance_level_to_arg,
'Contrast': _enhance_level_to_arg, 'Contrast': _enhance_level_to_arg,
'Brightness': _enhance_level_to_arg, 'Brightness': _enhance_level_to_arg,
'Sharpness': _enhance_level_to_arg, 'Sharpness': _enhance_level_to_arg,
'ShearX': _shear_level_to_arg, 'ShearX': _shear_level_to_arg,
'ShearY': _shear_level_to_arg, 'ShearY': _shear_level_to_arg,
'TranslateX': lambda level: _translate_abs_level_to_arg(level, hparams['translate_const']), 'TranslateX': _translate_abs_level_to_arg,
'TranslateY': lambda level: _translate_abs_level_to_arg(level, hparams['translate_const']), 'TranslateY': _translate_abs_level_to_arg,
'TranslateXRel': lambda level: _translate_rel_level_to_arg(level), 'TranslateXRel': _translate_rel_level_to_arg,
'TranslateYRel': lambda level: _translate_rel_level_to_arg(level), 'TranslateYRel': _translate_rel_level_to_arg,
} }
NAME_TO_OP = { NAME_TO_OP = {
@ -227,8 +256,9 @@ NAME_TO_OP = {
'Equalize': equalize, 'Equalize': equalize,
'Invert': invert, 'Invert': invert,
'Rotate': rotate, 'Rotate': rotate,
'Posterize': posterize, 'PosterizeOriginal': posterize,
'Posterize2': posterize, 'PosterizeResearch': posterize,
'PosterizeTpu': posterize,
'Solarize': solarize, 'Solarize': solarize,
'SolarizeAdd': solarize_add, 'SolarizeAdd': solarize_add,
'Color': color, 'Color': color,
@ -246,35 +276,70 @@ NAME_TO_OP = {
class AutoAugmentOp: class AutoAugmentOp:
def __init__(self, name, prob, magnitude, hparams={}): def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
hparams = hparams or _HPARAMS_DEFAULT
self.aug_fn = NAME_TO_OP[name] self.aug_fn = NAME_TO_OP[name]
self.level_fn = level_to_arg(hparams)[name] self.level_fn = LEVEL_TO_ARG[name]
self.prob = prob self.prob = prob
self.magnitude = magnitude self.magnitude = magnitude
# If std deviation of magnitude is > 0, we introduce some randomness self.hparams = hparams.copy()
# in the usually fixed policy and sample magnitude from normal dist self.kwargs = dict(
# with mean magnitude and std-dev of magnitude_std. fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL,
# NOTE This is being tested as it's not in paper or reference impl. resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION,
self.magnitude_std = 0.5 # FIXME add arg/hparam )
self.kwargs = {
'fillcolor': hparams['img_mean'] if 'img_mean' in hparams else _FILL, # If magnitude_noise is > 0, we introduce some randomness
'resample': hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION # in the usually fixed policy and sample magnitude from a normal distribution
} # with mean `magnitude` and std-dev of `magnitude_noise`.
# NOTE This is my own hack, being tested, not in papers or reference impls.
self.magnitude_noise = self.hparams.get('magnitude_noise', 0)
def __call__(self, img): def __call__(self, img):
if self.prob < random.random(): if random.random() > self.prob:
return img return img
magnitude = self.magnitude magnitude = self.magnitude
if self.magnitude_std and self.magnitude_std > 0: if self.magnitude_noise and self.magnitude_noise > 0:
magnitude = random.gauss(magnitude, self.magnitude_std) magnitude = random.gauss(magnitude, self.magnitude_noise)
magnitude = min(_MAX_LEVEL, max(0, magnitude)) magnitude = min(_MAX_LEVEL, max(0, magnitude)) # clip to valid range
level_args = self.level_fn(magnitude) level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple()
return self.aug_fn(img, *level_args, **self.kwargs) return self.aug_fn(img, *level_args, **self.kwargs)
def auto_augment_policy_v0(hparams=_HPARAMS_DEFAULT): def auto_augment_policy_v0(hparams):
# ImageNet policy from TPU EfficientNet impl, cannot find # ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference.
# a paper reference. policy = [
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
[('Color', 0.4, 9), ('Equalize', 0.6, 3)],
[('Color', 0.4, 1), ('Rotate', 0.6, 8)],
[('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
[('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
[('Color', 0.2, 0), ('Equalize', 0.8, 8)],
[('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
[('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
[('Color', 0.6, 1), ('Equalize', 1.0, 2)],
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
[('Color', 0.4, 7), ('Equalize', 0.6, 0)],
[('PosterizeTpu', 0.4, 6), ('AutoContrast', 0.4, 7)],
[('Solarize', 0.6, 8), ('Color', 0.6, 9)],
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
[('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
[('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
[('ShearY', 0.8, 0), ('Color', 0.6, 4)],
[('Color', 1.0, 0), ('Rotate', 0.6, 2)],
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
[('PosterizeTpu', 0.8, 2), ('Solarize', 0.6, 10)], # This results in black image with Tpu posterize
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
[('Color', 0.8, 6), ('Rotate', 0.4, 5)],
]
pc = [[AutoAugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc
def auto_augment_policy_v0r(hparams):
# ImageNet v0 policy from TPU EfficientNet impl, with research variation of Posterize
policy = [ policy = [
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
[('Color', 0.4, 9), ('Equalize', 0.6, 3)], [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
@ -288,7 +353,7 @@ def auto_augment_policy_v0(hparams=_HPARAMS_DEFAULT):
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)], [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
[('Color', 0.4, 7), ('Equalize', 0.6, 0)], [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
[('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)], [('PosterizeResearch', 0.4, 6), ('AutoContrast', 0.4, 7)],
[('Solarize', 0.6, 8), ('Color', 0.6, 9)], [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
[('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)], [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
@ -298,27 +363,60 @@ def auto_augment_policy_v0(hparams=_HPARAMS_DEFAULT):
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
[('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], [('PosterizeResearch', 0.8, 2), ('Solarize', 0.6, 10)],
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
[('Color', 0.8, 6), ('Rotate', 0.4, 5)], [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
] ]
pc = [[AutoAugmentOp(*a, hparams) for a in sp] for sp in policy] pc = [[AutoAugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc return pc
def auto_augment_policy_original(hparams=_HPARAMS_DEFAULT): def auto_augment_policy_original(hparams):
# ImageNet policy from https://arxiv.org/abs/1805.09501 # ImageNet policy from https://arxiv.org/abs/1805.09501
policy = [ policy = [
[('Posterize', 0.4, 8), ('Rotate', 0.6, 9)], [('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
[('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
[('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
[('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)],
[('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
[('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)],
[('Rotate', 0.8, 8), ('Color', 0.4, 0)],
[('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
[('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Rotate', 0.8, 8), ('Color', 1.0, 2)],
[('Color', 0.8, 8), ('Solarize', 0.8, 7)],
[('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
[('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
[('Color', 0.4, 0), ('Equalize', 0.6, 3)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
]
pc = [[AutoAugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc
def auto_augment_policy_originalr(hparams):
# ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation
policy = [
[('PosterizeResearch', 0.4, 8), ('Rotate', 0.6, 9)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
[('Posterize', 0.6, 7), ('Posterize', 0.6, 6)], [('PosterizeResearch', 0.6, 7), ('PosterizeResearch', 0.6, 6)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Equalize', 0.4, 4), ('Rotate', 0.8, 8)], [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
[('Solarize', 0.6, 3), ('Equalize', 0.6, 7)], [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
[('Posterize', 0.8, 5), ('Equalize', 1.0, 2)], [('PosterizeResearch', 0.8, 5), ('Equalize', 1.0, 2)],
[('Rotate', 0.2, 3), ('Solarize', 0.6, 8)], [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
[('Equalize', 0.6, 8), ('Posterize', 0.4, 6)], [('Equalize', 0.6, 8), ('PosterizeResearch', 0.4, 6)],
[('Rotate', 0.8, 8), ('Color', 0.4, 0)], [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
[('Rotate', 0.4, 9), ('Equalize', 0.6, 2)], [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
[('Equalize', 0.0, 7), ('Equalize', 0.8, 8)], [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
@ -335,15 +433,20 @@ def auto_augment_policy_original(hparams=_HPARAMS_DEFAULT):
[('Color', 0.6, 4), ('Contrast', 1.0, 8)], [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
] ]
pc = [[AutoAugmentOp(*a, hparams) for a in sp] for sp in policy] pc = [[AutoAugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc return pc
def auto_augment_policy(name='v0', hparams=_HPARAMS_DEFAULT): def auto_augment_policy(name='v0', hparams=None):
hparams = hparams or _HPARAMS_DEFAULT
if name == 'original': if name == 'original':
return auto_augment_policy_original(hparams) return auto_augment_policy_original(hparams)
elif name == 'originalr':
return auto_augment_policy_originalr(hparams)
elif name == 'v0': elif name == 'v0':
return auto_augment_policy_v0(hparams) return auto_augment_policy_v0(hparams)
elif name == 'v0r':
return auto_augment_policy_v0r(hparams)
else: else:
assert False, 'Unknown AA policy (%s)' % name assert False, 'Unknown AA policy (%s)' % name
@ -358,3 +461,78 @@ class AutoAugment:
for op in sub_policy: for op in sub_policy:
img = op(img) img = op(img)
return img return img
def auto_augment_transform(config_str, hparams):
config = config_str.split('-')
policy_name = config[0]
config = config[1:]
for c in config:
cs = re.split(r'(\d.*)', c)
if len(cs) >= 2:
key, val = cs[:2]
if key == 'noise':
# noise param injected via hparams for now
hparams.setdefault('magnitude_noise', float(val))
aa_policy = auto_augment_policy(policy_name, hparams=hparams)
return AutoAugment(aa_policy)
_RAND_TRANSFORMS = [
'AutoContrast',
'Equalize',
'Invert',
'Rotate',
'PosterizeTpu',
'Solarize',
'SolarizeAdd',
'Color',
'Contrast',
'Brightness',
'Sharpness',
'ShearX',
'ShearY',
'TranslateXRel',
'TranslateYRel',
#'Cutout' # FIXME I implement this as random erasing separately
]
def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
hparams = hparams or _HPARAMS_DEFAULT
transforms = transforms or _RAND_TRANSFORMS
return [AutoAugmentOp(
name, prob=0.5, magnitude=magnitude, hparams=hparams) for name in transforms]
class RandAugment:
def __init__(self, ops, num_layers=2):
self.ops = ops
self.num_layers = num_layers
def __call__(self, img):
for _ in range(self.num_layers):
op = random.choice(self.ops)
img = op(img)
return img
def rand_augment_transform(config_str, hparams):
magnitude = 10
num_layers = 2
config = config_str.split('-')
assert config[0] == 'rand'
config = config[1:]
for c in config:
cs = re.split(r'(\d.*)', c)
if len(cs) >= 2:
key, val = cs[:2]
if key == 'noise':
# noise param injected via hparams for now
hparams.setdefault('magnitude_noise', float(val))
elif key == 'm':
magnitude = int(val)
elif key == 'n':
num_layers = int(val)
ra_ops = rand_augment_ops(magnitude=magnitude, hparams=hparams)
return RandAugment(ra_ops, num_layers)

@ -9,7 +9,7 @@ import numpy as np
from .constants import DEFAULT_CROP_PCT, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .constants import DEFAULT_CROP_PCT, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .random_erasing import RandomErasing from .random_erasing import RandomErasing
from .auto_augment import AutoAugment, auto_augment_policy from .auto_augment import auto_augment_transform, rand_augment_transform
class ToNumpy: class ToNumpy:
@ -179,6 +179,7 @@ def transforms_imagenet_train(
transforms.RandomHorizontalFlip() transforms.RandomHorizontalFlip()
] ]
if auto_augment: if auto_augment:
assert isinstance(auto_augment, str)
if isinstance(img_size, tuple): if isinstance(img_size, tuple):
img_size_min = min(img_size) img_size_min = min(img_size)
else: else:
@ -189,8 +190,10 @@ def transforms_imagenet_train(
) )
if interpolation and interpolation != 'random': if interpolation and interpolation != 'random':
aa_params['interpolation'] = _pil_interp(interpolation) aa_params['interpolation'] = _pil_interp(interpolation)
aa_policy = auto_augment_policy(auto_augment, aa_params) if 'rand' in auto_augment:
tfl += [AutoAugment(aa_policy)] tfl += [rand_augment_transform(auto_augment, aa_params)]
else:
tfl += [auto_augment_transform(auto_augment, aa_params)]
else: else:
# color jitter is enabled when not using AA # color jitter is enabled when not using AA
if isinstance(color_jitter, (list, tuple)): if isinstance(color_jitter, (list, tuple)):

Loading…
Cancel
Save