Finish with HRNet, weights and models updated. Improve consistency in model classifier/global pool treatment.

pull/62/head
Ross Wightman 5 years ago
parent 3ceeedc441
commit 3bef524f9c

@ -8,12 +8,15 @@ from collections import OrderedDict
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--output', default='./cleaned.pth', type=str, metavar='PATH',
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='output path')
parser.add_argument('--use-ema', dest='use_ema', action='store_true',
help='use ema version of weights if present')
_TEMP_NAME = './_checkpoint.pth'
def main():
args = parser.parse_args()
@ -40,13 +43,18 @@ def main():
new_state_dict[name] = v
print("=> Loaded state_dict from '{}'".format(args.checkpoint))
torch.save(new_state_dict, args.output)
with open(args.output, 'rb') as f:
torch.save(new_state_dict, _TEMP_NAME)
with open(_TEMP_NAME, 'rb') as f:
sha_hash = hashlib.sha256(f.read()).hexdigest()
if args.output:
checkpoint_root, checkpoint_base = os.path.split(args.output)
checkpoint_base = os.path.splitext(checkpoint_base)[0]
else:
checkpoint_root = ''
checkpoint_base = os.path.splitext(args.checkpoint)[0]
final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + '.pth'
shutil.move(args.output, final_filename)
shutil.move(_TEMP_NAME, os.path.join(checkpoint_root, final_filename))
print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash))
else:
print("Error: Checkpoint ({}) doesn't exist".format(args.checkpoint))

@ -1,97 +1,155 @@
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
resnet18,57.18,42.82,80.19,19.81,11.69,224,0.875,bilinear
gluon_resnet18_v1b,58.32,41.68,80.96,19.04,11.69,224,0.875,bicubic
seresnet18,59.81,40.19,81.68,18.32,11.78,224,0.875,bicubic
tv_resnet34,61.2,38.8,82.72,17.28,21.8,224,0.875,bilinear
spnasnet_100,61.21,38.79,82.77,17.23,4.42,224,0.875,bilinear
mnasnet_100,61.91,38.09,83.71,16.29,4.38,224,0.875,bicubic
fbnetc_100,62.43,37.57,83.39,16.61,5.57,224,0.875,bilinear
gluon_resnet34_v1b,62.56,37.44,84,16,21.8,224,0.875,bicubic
resnet34,62.82,37.18,84.12,15.88,21.8,224,0.875,bilinear
seresnet34,62.89,37.11,84.22,15.78,21.96,224,0.875,bilinear
densenet121,62.94,37.06,84.26,15.74,7.98,224,0.875,bicubic
semnasnet_100,63.12,36.88,84.53,15.47,3.89,224,0.875,bicubic
mobilenetv3_100,63.23,36.77,84.52,15.48,5.48,224,0.875,bicubic
tv_resnet50,63.33,36.67,84.65,15.35,25.56,224,0.875,bilinear
mixnet_s,63.38,36.62,84.71,15.29,4.13,224,0.875,bicubic
resnet26,63.45,36.55,84.27,15.73,16,224,0.875,bicubic
tf_mixnet_s,63.59,36.41,84.27,15.73,4.13,224,0.875,bicubic
dpn68,64.22,35.78,85.18,14.82,12.61,224,0.875,bicubic
tf_mixnet_m,64.27,35.73,85.09,14.91,5.01,224,0.875,bicubic
tf_efficientnet_b0,64.29,35.71,85.25,14.75,5.29,224,0.875,bicubic
efficientnet_b0,64.58,35.42,85.89,14.11,5.29,224,0.875,bicubic
resnet26d,64.63,35.37,85.12,14.88,16.01,224,0.875,bicubic
mixnet_m,64.69,35.31,85.47,14.53,5.01,224,0.875,bicubic
densenet169,64.78,35.22,85.25,14.75,14.15,224,0.875,bicubic
seresnext26_32x4d,65.04,34.96,85.65,14.35,16.79,224,0.875,bicubic
tf_efficientnet_es,65.24,34.76,85.54,14.46,5.44,224,0.875,bicubic
densenet201,65.28,34.72,85.67,14.33,20.01,224,0.875,bicubic
dpn68b,65.6,34.4,85.94,14.06,12.61,224,0.875,bicubic
resnet101,65.68,34.32,85.98,14.02,44.55,224,0.875,bilinear
densenet161,65.85,34.15,86.46,13.54,28.68,224,0.875,bicubic
gluon_resnet50_v1b,66.04,33.96,86.27,13.73,25.56,224,0.875,bicubic
inception_v3,66.12,33.88,86.34,13.66,27.16,299,0.875,bicubic
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
seresnet50,66.24,33.76,86.33,13.67,28.09,224,0.875,bilinear
tf_inception_v3,66.41,33.59,86.68,13.32,23.83,299,0.875,bicubic
gluon_resnet50_v1c,66.54,33.46,86.16,13.84,25.58,224,0.875,bicubic
adv_inception_v3,66.6,33.4,86.56,13.44,23.83,299,0.875,bicubic
wide_resnet50_2,66.65,33.35,86.81,13.19,68.88,224,0.875,bilinear
wide_resnet101_2,66.68,33.32,87.04,12.96,126.89,224,0.875,bilinear
tf_mixnet_l,66.78,33.22,86.46,13.54,7.33,224,0.875,bicubic
resnet50,66.81,33.19,87,13,25.56,224,0.875,bicubic
tf_efficientnet_em,66.87,33.13,86.98,13.02,6.9,240,0.882,bicubic
resnext50_32x4d,66.88,33.12,86.36,13.64,25.03,224,0.875,bicubic
tf_efficientnet_b1,66.89,33.11,87.04,12.96,7.79,240,0.882,bicubic
mixnet_l,66.97,33.03,86.94,13.06,7.33,224,0.875,bicubic
resnet152,67.02,32.98,87.57,12.43,60.19,224,0.875,bilinear
gluon_resnet50_v1s,67.1,32.9,86.86,13.14,25.68,224,0.875,bicubic
seresnet101,67.15,32.85,87.05,12.95,49.33,224,0.875,bilinear
gluon_resnet101_v1b,67.45,32.55,87.23,12.77,44.55,224,0.875,bicubic
efficientnet_b1,67.55,32.45,87.29,12.71,7.79,240,0.882,bicubic
seresnet152,67.55,32.45,87.39,12.61,66.82,224,0.875,bilinear
gluon_resnet101_v1c,67.56,32.44,87.16,12.84,44.57,224,0.875,bicubic
gluon_inception_v3,67.59,32.41,87.46,12.54,23.83,299,0.875,bicubic
xception,67.67,32.33,87.57,12.43,22.86,299,0.8975,bicubic
efficientnet_b2,67.8,32.2,88.2,11.8,9.11,260,0.89,bicubic
resnext101_32x8d,67.85,32.15,87.48,12.52,88.79,224,0.875,bilinear
seresnext50_32x4d,67.87,32.13,87.62,12.38,27.56,224,0.875,bilinear
gluon_resnet50_v1d,67.91,32.09,87.12,12.88,25.58,224,0.875,bicubic
dpn92,68.01,31.99,87.59,12.41,37.67,224,0.875,bicubic
tf_efficientnet_el,68.18,31.82,88.35,11.65,10.59,300,0.904,bicubic
gluon_resnext50_32x4d,68.28,31.72,87.32,12.68,25.03,224,0.875,bicubic
dpn98,68.58,31.42,87.66,12.34,61.57,224,0.875,bicubic
gluon_seresnext50_32x4d,68.67,31.33,88.32,11.68,27.56,224,0.875,bicubic
dpn107,68.71,31.29,88.13,11.87,86.92,224,0.875,bicubic
gluon_resnet101_v1s,68.72,31.28,87.9,12.1,44.67,224,0.875,bicubic
ig_resnext101_32x48d,76.87,23.13,93.32,6.68,828.41,224,0.875,bilinear
ig_resnext101_32x32d,76.84,23.16,93.19,6.81,468.53,224,0.875,bilinear
tf_efficientnet_b7_ap,76.09,23.91,92.97,7.03,66.35,600,0.949,bicubic
tf_efficientnet_b8_ap,76.09,23.91,92.73,7.27,87.41,672,0.954,bicubic
ig_resnext101_32x16d,75.71,24.29,92.9,7.1,194.03,224,0.875,bilinear
swsl_resnext101_32x8d,75.45,24.55,92.75,7.25,88.79,224,0.875,bilinear
tf_efficientnet_b6_ap,75.38,24.62,92.44,7.56,43.04,528,0.942,bicubic
tf_efficientnet_b7,74.72,25.28,92.22,7.78,66.35,600,0.949,bicubic
tf_efficientnet_b5_ap,74.59,25.41,91.99,8.01,30.39,456,0.934,bicubic
swsl_resnext101_32x4d,74.15,25.85,91.99,8.01,44.18,224,0.875,bilinear
swsl_resnext101_32x16d,74.01,25.99,92.17,7.83,194.03,224,0.875,bilinear
tf_efficientnet_b6,73.9,26.1,91.75,8.25,43.04,528,0.942,bicubic
ig_resnext101_32x8d,73.66,26.34,92.15,7.85,88.79,224,0.875,bilinear
tf_efficientnet_b5,73.54,26.46,91.46,8.54,30.39,456,0.934,bicubic
tf_efficientnet_b4_ap,72.89,27.11,90.98,9.02,19.34,380,0.922,bicubic
swsl_resnext50_32x4d,72.58,27.42,90.84,9.16,25.03,224,0.875,bilinear
pnasnet5large,72.37,27.63,90.26,9.74,86.06,331,0.875,bicubic
nasnetalarge,72.31,27.69,90.51,9.49,88.75,331,0.875,bicubic
tf_efficientnet_b4,72.28,27.72,90.6,9.4,19.34,380,0.922,bicubic
swsl_resnet50,71.69,28.31,90.51,9.49,25.56,224,0.875,bilinear
ssl_resnext101_32x8d,71.49,28.51,90.47,9.53,88.79,224,0.875,bilinear
ssl_resnext101_32x16d,71.4,28.6,90.55,9.45,194.03,224,0.875,bilinear
tf_efficientnet_b3_ap,70.92,29.08,89.43,10.57,12.23,300,0.904,bicubic
tf_efficientnet_b3,70.62,29.38,89.44,10.56,12.23,300,0.904,bicubic
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
ssl_resnext101_32x4d,70.5,29.5,89.76,10.24,44.18,224,0.875,bilinear
senet154,70.48,29.52,88.99,11.01,115.09,224,0.875,bilinear
gluon_seresnext101_64x4d,70.44,29.56,89.35,10.65,88.23,224,0.875,bicubic
gluon_resnet152_v1s,70.32,29.68,88.87,11.13,60.32,224,0.875,bicubic
inception_resnet_v2,70.12,29.88,88.68,11.32,55.84,299,0.8975,bicubic
gluon_seresnext101_32x4d,70.01,29.99,88.91,11.09,48.96,224,0.875,bicubic
gluon_resnet152_v1d,69.95,30.05,88.47,11.53,60.21,224,0.875,bicubic
gluon_resnext101_64x4d,69.69,30.31,88.26,11.74,83.46,224,0.875,bicubic
ssl_resnext50_32x4d,69.69,30.31,89.42,10.58,25.03,224,0.875,bilinear
ens_adv_inception_resnet_v2,69.52,30.48,88.5,11.5,55.84,299,0.8975,bicubic
inception_v4,69.35,30.65,88.78,11.22,42.68,299,0.875,bicubic
seresnext101_32x4d,69.34,30.66,88.05,11.95,48.96,224,0.875,bilinear
gluon_resnet152_v1c,69.13,30.87,87.89,12.11,60.21,224,0.875,bicubic
mixnet_xl,69,31,88.19,11.81,11.9,224,0.875,bicubic
gluon_resnet101_v1d,68.99,31.01,88.08,11.92,44.57,224,0.875,bicubic
gluon_xception65,68.98,31.02,88.32,11.68,39.92,299,0.875,bicubic
gluon_resnext101_32x4d,68.96,31.04,88.34,11.66,44.18,224,0.875,bicubic
tf_efficientnet_b2_ap,68.93,31.07,88.34,11.66,9.11,260,0.89,bicubic
gluon_resnet152_v1b,68.81,31.19,87.71,12.29,60.19,224,0.875,bicubic
dpn131,68.76,31.24,87.48,12.52,79.25,224,0.875,bicubic
resnext50d_32x4d,68.75,31.25,88.31,11.69,25.05,224,0.875,bicubic
tf_efficientnet_b2,68.75,31.25,87.95,12.05,9.11,260,0.89,bicubic
dpn131,68.76,31.24,87.48,12.52,79.25,224,0.875,bicubic
gluon_resnet152_v1b,68.81,31.19,87.71,12.29,60.19,224,0.875,bicubic
gluon_resnext101_32x4d,68.96,31.04,88.34,11.66,44.18,224,0.875,bicubic
gluon_xception65,68.98,31.02,88.32,11.68,39.92,299,0.875,bicubic
gluon_resnet101_v1d,68.99,31.01,88.08,11.92,44.57,224,0.875,bicubic
mixnet_xl,69,31,88.19,11.81,11.9,224,0.875,bicubic
gluon_resnet152_v1c,69.13,30.87,87.89,12.11,60.21,224,0.875,bicubic
seresnext101_32x4d,69.34,30.66,88.05,11.95,48.96,224,0.875,bilinear
inception_v4,69.35,30.65,88.78,11.22,42.68,299,0.875,bicubic
ens_adv_inception_resnet_v2,69.52,30.48,88.5,11.5,55.84,299,0.8975,bicubic
gluon_resnext101_64x4d,69.69,30.31,88.26,11.74,83.46,224,0.875,bicubic
gluon_resnet152_v1d,69.95,30.05,88.47,11.53,60.21,224,0.875,bicubic
gluon_seresnext101_32x4d,70.01,29.99,88.91,11.09,48.96,224,0.875,bicubic
inception_resnet_v2,70.12,29.88,88.68,11.32,55.84,299,0.8975,bicubic
gluon_resnet152_v1s,70.32,29.68,88.87,11.13,60.32,224,0.875,bicubic
gluon_seresnext101_64x4d,70.44,29.56,89.35,10.65,88.23,224,0.875,bicubic
senet154,70.48,29.52,88.99,11.01,115.09,224,0.875,bilinear
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
tf_efficientnet_b3,70.62,29.38,89.44,10.56,12.23,300,0.904,bicubic
tf_efficientnet_b4,72.28,27.72,90.6,9.4,19.34,380,0.922,bicubic
nasnetalarge,72.31,27.69,90.51,9.49,88.75,331,0.875,bicubic
pnasnet5large,72.37,27.63,90.26,9.74,86.06,331,0.875,bicubic
tf_efficientnet_b5,73.37,26.63,91.21,8.79,30.39,456,0.934,bicubic
ig_resnext101_32x8d,73.66,26.34,92.15,7.85,88.79,224,0.875,bilinear
tf_efficientnet_b6,73.9,26.1,91.75,8.25,43.04,528,0.942,bicubic
tf_efficientnet_b7,74.04,25.96,91.86,8.14,66.35,600,0.949,bicubic
ig_resnext101_32x16d,75.71,24.29,92.9,7.1,194.03,224,0.875,bilinear
ig_resnext101_32x32d,76.84,23.16,93.19,6.81,468.53,224,0.875,bilinear
ig_resnext101_32x48d,76.87,23.13,93.32,6.68,828.41,224,0.875,bilinear
gluon_resnet101_v1s,68.72,31.28,87.9,12.1,44.67,224,0.875,bicubic
dpn107,68.71,31.29,88.13,11.87,86.92,224,0.875,bicubic
gluon_seresnext50_32x4d,68.67,31.33,88.32,11.68,27.56,224,0.875,bicubic
hrnet_w64,68.63,31.37,88.07,11.93,128.06,224,0.875,bilinear
dpn98,68.58,31.42,87.66,12.34,61.57,224,0.875,bicubic
ssl_resnet50,68.42,31.58,88.58,11.42,25.56,224,0.875,bilinear
dla102x2,68.34,31.66,87.87,12.13,41.75,224,0.875,bilinear
gluon_resnext50_32x4d,68.28,31.72,87.32,12.68,25.03,224,0.875,bicubic
tf_efficientnet_el,68.18,31.82,88.35,11.65,10.59,300,0.904,bicubic
dpn92,68.01,31.99,87.59,12.41,37.67,224,0.875,bicubic
gluon_resnet50_v1d,67.91,32.09,87.12,12.88,25.58,224,0.875,bicubic
seresnext50_32x4d,67.87,32.13,87.62,12.38,27.56,224,0.875,bilinear
resnext101_32x8d,67.85,32.15,87.48,12.52,88.79,224,0.875,bilinear
efficientnet_b2,67.8,32.2,88.2,11.8,9.11,260,0.89,bicubic
hrnet_w44,67.77,32.23,87.53,12.47,67.06,224,0.875,bilinear
hrnet_w48,67.77,32.23,87.42,12.58,77.47,224,0.875,bilinear
xception,67.67,32.33,87.57,12.43,22.86,299,0.8975,bicubic
dla169,67.61,32.39,87.56,12.44,53.99,224,0.875,bilinear
gluon_inception_v3,67.59,32.41,87.46,12.54,23.83,299,0.875,bicubic
hrnet_w40,67.59,32.41,87.13,12.87,57.56,224,0.875,bilinear
gluon_resnet101_v1c,67.56,32.44,87.16,12.84,44.57,224,0.875,bicubic
efficientnet_b1,67.55,32.45,87.29,12.71,7.79,240,0.882,bicubic
seresnet152,67.55,32.45,87.39,12.61,66.82,224,0.875,bilinear
res2net50_26w_8s,67.53,32.47,87.27,12.73,48.4,224,0.875,bilinear
tf_efficientnet_b1_ap,67.52,32.48,87.77,12.23,7.79,240,0.882,bicubic
tf_efficientnet_cc_b1_8e,67.48,32.52,87.31,12.69,39.72,240,0.882,bicubic
gluon_resnet101_v1b,67.45,32.55,87.23,12.77,44.55,224,0.875,bicubic
res2net101_26w_4s,67.45,32.55,87.01,12.99,45.21,224,0.875,bilinear
seresnet101,67.15,32.85,87.05,12.95,49.33,224,0.875,bilinear
gluon_resnet50_v1s,67.1,32.9,86.86,13.14,25.68,224,0.875,bicubic
dla60x,67.08,32.92,87.17,12.83,17.65,224,0.875,bilinear
dla60_res2net,67.03,32.97,87.14,12.86,21.15,224,0.875,bilinear
resnet152,67.02,32.98,87.57,12.43,60.19,224,0.875,bilinear
dla102x,67,33,86.77,13.23,26.77,224,0.875,bilinear
mixnet_l,66.97,33.03,86.94,13.06,7.33,224,0.875,bicubic
res2net50_26w_6s,66.91,33.09,86.9,13.1,37.05,224,0.875,bilinear
tf_efficientnet_b1,66.89,33.11,87.04,12.96,7.79,240,0.882,bicubic
resnext50_32x4d,66.88,33.12,86.36,13.64,25.03,224,0.875,bicubic
tf_efficientnet_em,66.87,33.13,86.98,13.02,6.9,240,0.882,bicubic
resnet50,66.81,33.19,87,13,25.56,224,0.875,bicubic
hrnet_w32,66.79,33.21,87.29,12.71,41.23,224,0.875,bilinear
tf_mixnet_l,66.78,33.22,86.46,13.54,7.33,224,0.875,bicubic
hrnet_w30,66.76,33.24,86.79,13.21,37.71,224,0.875,bilinear
wide_resnet101_2,66.68,33.32,87.04,12.96,126.89,224,0.875,bilinear
wide_resnet50_2,66.65,33.35,86.81,13.19,68.88,224,0.875,bilinear
dla60_res2next,66.64,33.36,87.02,12.98,17.33,224,0.875,bilinear
adv_inception_v3,66.6,33.4,86.56,13.44,23.83,299,0.875,bicubic
dla102,66.55,33.45,86.91,13.09,33.73,224,0.875,bilinear
gluon_resnet50_v1c,66.54,33.46,86.16,13.84,25.58,224,0.875,bicubic
tf_inception_v3,66.42,33.58,86.68,13.32,23.83,299,0.875,bicubic
seresnet50,66.24,33.76,86.33,13.67,28.09,224,0.875,bilinear
tf_efficientnet_cc_b0_8e,66.21,33.79,86.22,13.78,24.01,224,0.875,bicubic
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
res2net50_26w_4s,66.17,33.83,86.6,13.4,25.7,224,0.875,bilinear
inception_v3,66.12,33.88,86.34,13.66,27.16,299,0.875,bicubic
gluon_resnet50_v1b,66.04,33.96,86.27,13.73,25.56,224,0.875,bicubic
res2net50_14w_8s,66.02,33.98,86.24,13.76,25.06,224,0.875,bilinear
densenet161,65.85,34.15,86.46,13.54,28.68,224,0.875,bicubic
res2next50,65.85,34.15,85.83,14.17,24.67,224,0.875,bilinear
resnet101,65.68,34.32,85.98,14.02,44.55,224,0.875,bilinear
dpn68b,65.6,34.4,85.94,14.06,12.61,224,0.875,bicubic
tf_efficientnet_b0_ap,65.49,34.51,85.55,14.45,5.29,224,0.875,bicubic
res2net50_48w_2s,65.32,34.68,85.96,14.04,25.29,224,0.875,bilinear
densenet201,65.28,34.72,85.67,14.33,20.01,224,0.875,bicubic
tf_efficientnet_es,65.24,34.76,85.54,14.46,5.44,224,0.875,bicubic
dla60,65.22,34.78,85.75,14.25,22.33,224,0.875,bilinear
tf_efficientnet_cc_b0_4e,65.13,34.87,85.13,14.87,13.31,224,0.875,bicubic
seresnext26_32x4d,65.04,34.96,85.65,14.35,16.79,224,0.875,bicubic
hrnet_w18,64.91,35.09,85.75,14.25,21.3,224,0.875,bilinear
densenet169,64.78,35.22,85.25,14.75,14.15,224,0.875,bicubic
mixnet_m,64.69,35.31,85.47,14.53,5.01,224,0.875,bicubic
resnet26d,64.63,35.37,85.12,14.88,16.01,224,0.875,bicubic
efficientnet_b0,64.58,35.42,85.89,14.11,5.29,224,0.875,bicubic
tf_efficientnet_b0,64.29,35.71,85.25,14.75,5.29,224,0.875,bicubic
tf_mixnet_m,64.27,35.73,85.09,14.91,5.01,224,0.875,bicubic
dpn68,64.22,35.78,85.18,14.82,12.61,224,0.875,bicubic
tf_mixnet_s,63.59,36.41,84.27,15.73,4.13,224,0.875,bicubic
resnet26,63.45,36.55,84.27,15.73,16,224,0.875,bicubic
mixnet_s,63.38,36.62,84.71,15.29,4.13,224,0.875,bicubic
tv_resnet50,63.33,36.67,84.65,15.35,25.56,224,0.875,bilinear
mobilenetv3_rw,63.23,36.77,84.52,15.48,5.48,224,0.875,bicubic
semnasnet_100,63.12,36.88,84.53,15.47,3.89,224,0.875,bicubic
densenet121,62.94,37.06,84.26,15.74,7.98,224,0.875,bicubic
seresnet34,62.89,37.11,84.22,15.78,21.96,224,0.875,bilinear
hrnet_w18_small_v2,62.83,37.17,83.97,16.03,15.6,224,0.875,bilinear
resnet34,62.82,37.18,84.12,15.88,21.8,224,0.875,bilinear
swsl_resnet18,62.73,37.27,84.3,15.7,11.69,224,0.875,bilinear
gluon_resnet34_v1b,62.56,37.44,84,16,21.8,224,0.875,bicubic
dla34,62.51,37.49,83.92,16.08,15.78,224,0.875,bilinear
tf_mobilenetv3_large_100,62.47,37.53,83.96,16.04,5.48,224,0.875,bilinear
fbnetc_100,62.43,37.57,83.39,16.61,5.57,224,0.875,bilinear
mnasnet_100,61.91,38.09,83.71,16.29,4.38,224,0.875,bicubic
ssl_resnet18,61.49,38.51,83.33,16.67,11.69,224,0.875,bilinear
spnasnet_100,61.21,38.79,82.77,17.23,4.42,224,0.875,bilinear
tv_resnet34,61.2,38.8,82.72,17.28,21.8,224,0.875,bilinear
tf_mobilenetv3_large_075,60.38,39.62,81.96,18.04,3.99,224,0.875,bilinear
seresnet18,59.81,40.19,81.68,18.32,11.78,224,0.875,bicubic
tf_mobilenetv3_large_minimal_100,59.07,40.93,81.14,18.86,3.92,224,0.875,bilinear
hrnet_w18_small,58.97,41.03,81.34,18.66,13.19,224,0.875,bilinear
gluon_resnet18_v1b,58.32,41.68,80.96,19.04,11.69,224,0.875,bicubic
resnet18,57.18,42.82,80.19,19.81,11.69,224,0.875,bilinear
dla60x_c,56.02,43.98,78.96,21.04,1.34,224,0.875,bilinear
tf_mobilenetv3_small_100,54.51,45.49,77.08,22.92,2.54,224,0.875,bilinear
dla46x_c,53.08,46.92,76.84,23.16,1.08,224,0.875,bilinear
dla46_c,52.2,47.8,75.68,24.32,1.31,224,0.875,bilinear
tf_mobilenetv3_small_075,52.15,47.85,75.46,24.54,2.04,224,0.875,bilinear
tf_mobilenetv3_small_minimal_100,49.53,50.47,73.05,26.95,2.04,224,0.875,bilinear

1 model top1 top1_err top5 top5_err param_count img_size cropt_pct interpolation
2 resnet18 ig_resnext101_32x48d 57.18 76.87 42.82 23.13 80.19 93.32 19.81 6.68 11.69 828.41 224 0.875 bilinear
3 gluon_resnet18_v1b ig_resnext101_32x32d 58.32 76.84 41.68 23.16 80.96 93.19 19.04 6.81 11.69 468.53 224 0.875 bicubic bilinear
4 seresnet18 tf_efficientnet_b7_ap 59.81 76.09 40.19 23.91 81.68 92.97 18.32 7.03 11.78 66.35 224 600 0.875 0.949 bicubic
5 tv_resnet34 tf_efficientnet_b8_ap 61.2 76.09 38.8 23.91 82.72 92.73 17.28 7.27 21.8 87.41 224 672 0.875 0.954 bilinear bicubic
6 spnasnet_100 ig_resnext101_32x16d 61.21 75.71 38.79 24.29 82.77 92.9 17.23 7.1 4.42 194.03 224 0.875 bilinear
7 mnasnet_100 swsl_resnext101_32x8d 61.91 75.45 38.09 24.55 83.71 92.75 16.29 7.25 4.38 88.79 224 0.875 bicubic bilinear
8 fbnetc_100 tf_efficientnet_b6_ap 62.43 75.38 37.57 24.62 83.39 92.44 16.61 7.56 5.57 43.04 224 528 0.875 0.942 bilinear bicubic
9 gluon_resnet34_v1b tf_efficientnet_b7 62.56 74.72 37.44 25.28 84 92.22 16 7.78 21.8 66.35 224 600 0.875 0.949 bicubic
10 resnet34 tf_efficientnet_b5_ap 62.82 74.59 37.18 25.41 84.12 91.99 15.88 8.01 21.8 30.39 224 456 0.875 0.934 bilinear bicubic
11 seresnet34 swsl_resnext101_32x4d 62.89 74.15 37.11 25.85 84.22 91.99 15.78 8.01 21.96 44.18 224 0.875 bilinear
12 densenet121 swsl_resnext101_32x16d 62.94 74.01 37.06 25.99 84.26 92.17 15.74 7.83 7.98 194.03 224 0.875 bicubic bilinear
13 semnasnet_100 tf_efficientnet_b6 63.12 73.9 36.88 26.1 84.53 91.75 15.47 8.25 3.89 43.04 224 528 0.875 0.942 bicubic
14 mobilenetv3_100 ig_resnext101_32x8d 63.23 73.66 36.77 26.34 84.52 92.15 15.48 7.85 5.48 88.79 224 0.875 bicubic bilinear
15 tv_resnet50 tf_efficientnet_b5 63.33 73.54 36.67 26.46 84.65 91.46 15.35 8.54 25.56 30.39 224 456 0.875 0.934 bilinear bicubic
16 mixnet_s tf_efficientnet_b4_ap 63.38 72.89 36.62 27.11 84.71 90.98 15.29 9.02 4.13 19.34 224 380 0.875 0.922 bicubic
17 resnet26 swsl_resnext50_32x4d 63.45 72.58 36.55 27.42 84.27 90.84 15.73 9.16 16 25.03 224 0.875 bicubic bilinear
18 tf_mixnet_s pnasnet5large 63.59 72.37 36.41 27.63 84.27 90.26 15.73 9.74 4.13 86.06 224 331 0.875 bicubic
19 dpn68 nasnetalarge 64.22 72.31 35.78 27.69 85.18 90.51 14.82 9.49 12.61 88.75 224 331 0.875 bicubic
20 tf_mixnet_m tf_efficientnet_b4 64.27 72.28 35.73 27.72 85.09 90.6 14.91 9.4 5.01 19.34 224 380 0.875 0.922 bicubic
21 tf_efficientnet_b0 swsl_resnet50 64.29 71.69 35.71 28.31 85.25 90.51 14.75 9.49 5.29 25.56 224 0.875 bicubic bilinear
22 efficientnet_b0 ssl_resnext101_32x8d 64.58 71.49 35.42 28.51 85.89 90.47 14.11 9.53 5.29 88.79 224 0.875 bicubic bilinear
23 resnet26d ssl_resnext101_32x16d 64.63 71.4 35.37 28.6 85.12 90.55 14.88 9.45 16.01 194.03 224 0.875 bicubic bilinear
24 mixnet_m tf_efficientnet_b3_ap 64.69 70.92 35.31 29.08 85.47 89.43 14.53 10.57 5.01 12.23 224 300 0.875 0.904 bicubic
25 densenet169 tf_efficientnet_b3 64.78 70.62 35.22 29.38 85.25 89.44 14.75 10.56 14.15 12.23 224 300 0.875 0.904 bicubic
26 seresnext26_32x4d gluon_senet154 65.04 70.6 34.96 29.4 85.65 88.92 14.35 11.08 16.79 115.09 224 0.875 bicubic
27 tf_efficientnet_es ssl_resnext101_32x4d 65.24 70.5 34.76 29.5 85.54 89.76 14.46 10.24 5.44 44.18 224 0.875 bicubic bilinear
28 densenet201 senet154 65.28 70.48 34.72 29.52 85.67 88.99 14.33 11.01 20.01 115.09 224 0.875 bicubic bilinear
29 dpn68b gluon_seresnext101_64x4d 65.6 70.44 34.4 29.56 85.94 89.35 14.06 10.65 12.61 88.23 224 0.875 bicubic
30 resnet101 gluon_resnet152_v1s 65.68 70.32 34.32 29.68 85.98 88.87 14.02 11.13 44.55 60.32 224 0.875 bilinear bicubic
31 densenet161 inception_resnet_v2 65.85 70.12 34.15 29.88 86.46 88.68 13.54 11.32 28.68 55.84 224 299 0.875 0.8975 bicubic
32 gluon_resnet50_v1b gluon_seresnext101_32x4d 66.04 70.01 33.96 29.99 86.27 88.91 13.73 11.09 25.56 48.96 224 0.875 bicubic
33 inception_v3 gluon_resnet152_v1d 66.12 69.95 33.88 30.05 86.34 88.47 13.66 11.53 27.16 60.21 299 224 0.875 bicubic
34 tv_resnext50_32x4d gluon_resnext101_64x4d 66.18 69.69 33.82 30.31 86.04 88.26 13.96 11.74 25.03 83.46 224 0.875 bilinear bicubic
35 seresnet50 ssl_resnext50_32x4d 66.24 69.69 33.76 30.31 86.33 89.42 13.67 10.58 28.09 25.03 224 0.875 bilinear
36 tf_inception_v3 ens_adv_inception_resnet_v2 66.41 69.52 33.59 30.48 86.68 88.5 13.32 11.5 23.83 55.84 299 0.875 0.8975 bicubic
37 gluon_resnet50_v1c inception_v4 66.54 69.35 33.46 30.65 86.16 88.78 13.84 11.22 25.58 42.68 224 299 0.875 bicubic
38 adv_inception_v3 seresnext101_32x4d 66.6 69.34 33.4 30.66 86.56 88.05 13.44 11.95 23.83 48.96 299 224 0.875 bicubic bilinear
39 wide_resnet50_2 gluon_resnet152_v1c 66.65 69.13 33.35 30.87 86.81 87.89 13.19 12.11 68.88 60.21 224 0.875 bilinear bicubic
40 wide_resnet101_2 mixnet_xl 66.68 69 33.32 31 87.04 88.19 12.96 11.81 126.89 11.9 224 0.875 bilinear bicubic
41 tf_mixnet_l gluon_resnet101_v1d 66.78 68.99 33.22 31.01 86.46 88.08 13.54 11.92 7.33 44.57 224 0.875 bicubic
42 resnet50 gluon_xception65 66.81 68.98 33.19 31.02 87 88.32 13 11.68 25.56 39.92 224 299 0.875 bicubic
43 tf_efficientnet_em gluon_resnext101_32x4d 66.87 68.96 33.13 31.04 86.98 88.34 13.02 11.66 6.9 44.18 240 224 0.882 0.875 bicubic
44 resnext50_32x4d tf_efficientnet_b2_ap 66.88 68.93 33.12 31.07 86.36 88.34 13.64 11.66 25.03 9.11 224 260 0.875 0.89 bicubic
45 tf_efficientnet_b1 gluon_resnet152_v1b 66.89 68.81 33.11 31.19 87.04 87.71 12.96 12.29 7.79 60.19 240 224 0.882 0.875 bicubic
46 mixnet_l dpn131 66.97 68.76 33.03 31.24 86.94 87.48 13.06 12.52 7.33 79.25 224 0.875 bicubic
resnet152 67.02 32.98 87.57 12.43 60.19 224 0.875 bilinear
gluon_resnet50_v1s 67.1 32.9 86.86 13.14 25.68 224 0.875 bicubic
seresnet101 67.15 32.85 87.05 12.95 49.33 224 0.875 bilinear
gluon_resnet101_v1b 67.45 32.55 87.23 12.77 44.55 224 0.875 bicubic
efficientnet_b1 67.55 32.45 87.29 12.71 7.79 240 0.882 bicubic
seresnet152 67.55 32.45 87.39 12.61 66.82 224 0.875 bilinear
gluon_resnet101_v1c 67.56 32.44 87.16 12.84 44.57 224 0.875 bicubic
gluon_inception_v3 67.59 32.41 87.46 12.54 23.83 299 0.875 bicubic
xception 67.67 32.33 87.57 12.43 22.86 299 0.8975 bicubic
efficientnet_b2 67.8 32.2 88.2 11.8 9.11 260 0.89 bicubic
resnext101_32x8d 67.85 32.15 87.48 12.52 88.79 224 0.875 bilinear
seresnext50_32x4d 67.87 32.13 87.62 12.38 27.56 224 0.875 bilinear
gluon_resnet50_v1d 67.91 32.09 87.12 12.88 25.58 224 0.875 bicubic
dpn92 68.01 31.99 87.59 12.41 37.67 224 0.875 bicubic
tf_efficientnet_el 68.18 31.82 88.35 11.65 10.59 300 0.904 bicubic
gluon_resnext50_32x4d 68.28 31.72 87.32 12.68 25.03 224 0.875 bicubic
dpn98 68.58 31.42 87.66 12.34 61.57 224 0.875 bicubic
gluon_seresnext50_32x4d 68.67 31.33 88.32 11.68 27.56 224 0.875 bicubic
dpn107 68.71 31.29 88.13 11.87 86.92 224 0.875 bicubic
gluon_resnet101_v1s 68.72 31.28 87.9 12.1 44.67 224 0.875 bicubic
47 resnext50d_32x4d 68.75 31.25 88.31 11.69 25.05 224 0.875 bicubic
48 tf_efficientnet_b2 68.75 31.25 87.95 12.05 9.11 260 0.89 bicubic
49 dpn131 gluon_resnet101_v1s 68.76 68.72 31.24 31.28 87.48 87.9 12.52 12.1 79.25 44.67 224 0.875 bicubic
50 gluon_resnet152_v1b dpn107 68.81 68.71 31.19 31.29 87.71 88.13 12.29 11.87 60.19 86.92 224 0.875 bicubic
51 gluon_resnext101_32x4d gluon_seresnext50_32x4d 68.96 68.67 31.04 31.33 88.34 88.32 11.66 11.68 44.18 27.56 224 0.875 bicubic
52 gluon_xception65 hrnet_w64 68.98 68.63 31.02 31.37 88.32 88.07 11.68 11.93 39.92 128.06 299 224 0.875 bicubic bilinear
53 gluon_resnet101_v1d dpn98 68.99 68.58 31.01 31.42 88.08 87.66 11.92 12.34 44.57 61.57 224 0.875 bicubic
54 mixnet_xl ssl_resnet50 69 68.42 31 31.58 88.19 88.58 11.81 11.42 11.9 25.56 224 0.875 bicubic bilinear
55 gluon_resnet152_v1c dla102x2 69.13 68.34 30.87 31.66 87.89 87.87 12.11 12.13 60.21 41.75 224 0.875 bicubic bilinear
56 seresnext101_32x4d gluon_resnext50_32x4d 69.34 68.28 30.66 31.72 88.05 87.32 11.95 12.68 48.96 25.03 224 0.875 bilinear bicubic
57 inception_v4 tf_efficientnet_el 69.35 68.18 30.65 31.82 88.78 88.35 11.22 11.65 42.68 10.59 299 300 0.875 0.904 bicubic
58 ens_adv_inception_resnet_v2 dpn92 69.52 68.01 30.48 31.99 88.5 87.59 11.5 12.41 55.84 37.67 299 224 0.8975 0.875 bicubic
59 gluon_resnext101_64x4d gluon_resnet50_v1d 69.69 67.91 30.31 32.09 88.26 87.12 11.74 12.88 83.46 25.58 224 0.875 bicubic
60 gluon_resnet152_v1d seresnext50_32x4d 69.95 67.87 30.05 32.13 88.47 87.62 11.53 12.38 60.21 27.56 224 0.875 bicubic bilinear
61 gluon_seresnext101_32x4d resnext101_32x8d 70.01 67.85 29.99 32.15 88.91 87.48 11.09 12.52 48.96 88.79 224 0.875 bicubic bilinear
62 inception_resnet_v2 efficientnet_b2 70.12 67.8 29.88 32.2 88.68 88.2 11.32 11.8 55.84 9.11 299 260 0.8975 0.89 bicubic
63 gluon_resnet152_v1s hrnet_w44 70.32 67.77 29.68 32.23 88.87 87.53 11.13 12.47 60.32 67.06 224 0.875 bicubic bilinear
64 gluon_seresnext101_64x4d hrnet_w48 70.44 67.77 29.56 32.23 89.35 87.42 10.65 12.58 88.23 77.47 224 0.875 bicubic bilinear
65 senet154 xception 70.48 67.67 29.52 32.33 88.99 87.57 11.01 12.43 115.09 22.86 224 299 0.875 0.8975 bilinear bicubic
66 gluon_senet154 dla169 70.6 67.61 29.4 32.39 88.92 87.56 11.08 12.44 115.09 53.99 224 0.875 bicubic bilinear
67 tf_efficientnet_b3 gluon_inception_v3 70.62 67.59 29.38 32.41 89.44 87.46 10.56 12.54 12.23 23.83 300 299 0.904 0.875 bicubic
68 tf_efficientnet_b4 hrnet_w40 72.28 67.59 27.72 32.41 90.6 87.13 9.4 12.87 19.34 57.56 380 224 0.922 0.875 bicubic bilinear
69 nasnetalarge gluon_resnet101_v1c 72.31 67.56 27.69 32.44 90.51 87.16 9.49 12.84 88.75 44.57 331 224 0.875 bicubic
70 pnasnet5large efficientnet_b1 72.37 67.55 27.63 32.45 90.26 87.29 9.74 12.71 86.06 7.79 331 240 0.875 0.882 bicubic
71 tf_efficientnet_b5 seresnet152 73.37 67.55 26.63 32.45 91.21 87.39 8.79 12.61 30.39 66.82 456 224 0.934 0.875 bicubic bilinear
72 ig_resnext101_32x8d res2net50_26w_8s 73.66 67.53 26.34 32.47 92.15 87.27 7.85 12.73 88.79 48.4 224 0.875 bilinear
73 tf_efficientnet_b6 tf_efficientnet_b1_ap 73.9 67.52 26.1 32.48 91.75 87.77 8.25 12.23 43.04 7.79 528 240 0.942 0.882 bicubic
74 tf_efficientnet_b7 tf_efficientnet_cc_b1_8e 74.04 67.48 25.96 32.52 91.86 87.31 8.14 12.69 66.35 39.72 600 240 0.949 0.882 bicubic
75 ig_resnext101_32x16d gluon_resnet101_v1b 75.71 67.45 24.29 32.55 92.9 87.23 7.1 12.77 194.03 44.55 224 0.875 bilinear bicubic
76 ig_resnext101_32x32d res2net101_26w_4s 76.84 67.45 23.16 32.55 93.19 87.01 6.81 12.99 468.53 45.21 224 0.875 bilinear
77 ig_resnext101_32x48d seresnet101 76.87 67.15 23.13 32.85 93.32 87.05 6.68 12.95 828.41 49.33 224 0.875 bilinear
78 gluon_resnet50_v1s 67.1 32.9 86.86 13.14 25.68 224 0.875 bicubic
79 dla60x 67.08 32.92 87.17 12.83 17.65 224 0.875 bilinear
80 dla60_res2net 67.03 32.97 87.14 12.86 21.15 224 0.875 bilinear
81 resnet152 67.02 32.98 87.57 12.43 60.19 224 0.875 bilinear
82 dla102x 67 33 86.77 13.23 26.77 224 0.875 bilinear
83 mixnet_l 66.97 33.03 86.94 13.06 7.33 224 0.875 bicubic
84 res2net50_26w_6s 66.91 33.09 86.9 13.1 37.05 224 0.875 bilinear
85 tf_efficientnet_b1 66.89 33.11 87.04 12.96 7.79 240 0.882 bicubic
86 resnext50_32x4d 66.88 33.12 86.36 13.64 25.03 224 0.875 bicubic
87 tf_efficientnet_em 66.87 33.13 86.98 13.02 6.9 240 0.882 bicubic
88 resnet50 66.81 33.19 87 13 25.56 224 0.875 bicubic
89 hrnet_w32 66.79 33.21 87.29 12.71 41.23 224 0.875 bilinear
90 tf_mixnet_l 66.78 33.22 86.46 13.54 7.33 224 0.875 bicubic
91 hrnet_w30 66.76 33.24 86.79 13.21 37.71 224 0.875 bilinear
92 wide_resnet101_2 66.68 33.32 87.04 12.96 126.89 224 0.875 bilinear
93 wide_resnet50_2 66.65 33.35 86.81 13.19 68.88 224 0.875 bilinear
94 dla60_res2next 66.64 33.36 87.02 12.98 17.33 224 0.875 bilinear
95 adv_inception_v3 66.6 33.4 86.56 13.44 23.83 299 0.875 bicubic
96 dla102 66.55 33.45 86.91 13.09 33.73 224 0.875 bilinear
97 gluon_resnet50_v1c 66.54 33.46 86.16 13.84 25.58 224 0.875 bicubic
98 tf_inception_v3 66.42 33.58 86.68 13.32 23.83 299 0.875 bicubic
99 seresnet50 66.24 33.76 86.33 13.67 28.09 224 0.875 bilinear
100 tf_efficientnet_cc_b0_8e 66.21 33.79 86.22 13.78 24.01 224 0.875 bicubic
101 tv_resnext50_32x4d 66.18 33.82 86.04 13.96 25.03 224 0.875 bilinear
102 res2net50_26w_4s 66.17 33.83 86.6 13.4 25.7 224 0.875 bilinear
103 inception_v3 66.12 33.88 86.34 13.66 27.16 299 0.875 bicubic
104 gluon_resnet50_v1b 66.04 33.96 86.27 13.73 25.56 224 0.875 bicubic
105 res2net50_14w_8s 66.02 33.98 86.24 13.76 25.06 224 0.875 bilinear
106 densenet161 65.85 34.15 86.46 13.54 28.68 224 0.875 bicubic
107 res2next50 65.85 34.15 85.83 14.17 24.67 224 0.875 bilinear
108 resnet101 65.68 34.32 85.98 14.02 44.55 224 0.875 bilinear
109 dpn68b 65.6 34.4 85.94 14.06 12.61 224 0.875 bicubic
110 tf_efficientnet_b0_ap 65.49 34.51 85.55 14.45 5.29 224 0.875 bicubic
111 res2net50_48w_2s 65.32 34.68 85.96 14.04 25.29 224 0.875 bilinear
112 densenet201 65.28 34.72 85.67 14.33 20.01 224 0.875 bicubic
113 tf_efficientnet_es 65.24 34.76 85.54 14.46 5.44 224 0.875 bicubic
114 dla60 65.22 34.78 85.75 14.25 22.33 224 0.875 bilinear
115 tf_efficientnet_cc_b0_4e 65.13 34.87 85.13 14.87 13.31 224 0.875 bicubic
116 seresnext26_32x4d 65.04 34.96 85.65 14.35 16.79 224 0.875 bicubic
117 hrnet_w18 64.91 35.09 85.75 14.25 21.3 224 0.875 bilinear
118 densenet169 64.78 35.22 85.25 14.75 14.15 224 0.875 bicubic
119 mixnet_m 64.69 35.31 85.47 14.53 5.01 224 0.875 bicubic
120 resnet26d 64.63 35.37 85.12 14.88 16.01 224 0.875 bicubic
121 efficientnet_b0 64.58 35.42 85.89 14.11 5.29 224 0.875 bicubic
122 tf_efficientnet_b0 64.29 35.71 85.25 14.75 5.29 224 0.875 bicubic
123 tf_mixnet_m 64.27 35.73 85.09 14.91 5.01 224 0.875 bicubic
124 dpn68 64.22 35.78 85.18 14.82 12.61 224 0.875 bicubic
125 tf_mixnet_s 63.59 36.41 84.27 15.73 4.13 224 0.875 bicubic
126 resnet26 63.45 36.55 84.27 15.73 16 224 0.875 bicubic
127 mixnet_s 63.38 36.62 84.71 15.29 4.13 224 0.875 bicubic
128 tv_resnet50 63.33 36.67 84.65 15.35 25.56 224 0.875 bilinear
129 mobilenetv3_rw 63.23 36.77 84.52 15.48 5.48 224 0.875 bicubic
130 semnasnet_100 63.12 36.88 84.53 15.47 3.89 224 0.875 bicubic
131 densenet121 62.94 37.06 84.26 15.74 7.98 224 0.875 bicubic
132 seresnet34 62.89 37.11 84.22 15.78 21.96 224 0.875 bilinear
133 hrnet_w18_small_v2 62.83 37.17 83.97 16.03 15.6 224 0.875 bilinear
134 resnet34 62.82 37.18 84.12 15.88 21.8 224 0.875 bilinear
135 swsl_resnet18 62.73 37.27 84.3 15.7 11.69 224 0.875 bilinear
136 gluon_resnet34_v1b 62.56 37.44 84 16 21.8 224 0.875 bicubic
137 dla34 62.51 37.49 83.92 16.08 15.78 224 0.875 bilinear
138 tf_mobilenetv3_large_100 62.47 37.53 83.96 16.04 5.48 224 0.875 bilinear
139 fbnetc_100 62.43 37.57 83.39 16.61 5.57 224 0.875 bilinear
140 mnasnet_100 61.91 38.09 83.71 16.29 4.38 224 0.875 bicubic
141 ssl_resnet18 61.49 38.51 83.33 16.67 11.69 224 0.875 bilinear
142 spnasnet_100 61.21 38.79 82.77 17.23 4.42 224 0.875 bilinear
143 tv_resnet34 61.2 38.8 82.72 17.28 21.8 224 0.875 bilinear
144 tf_mobilenetv3_large_075 60.38 39.62 81.96 18.04 3.99 224 0.875 bilinear
145 seresnet18 59.81 40.19 81.68 18.32 11.78 224 0.875 bicubic
146 tf_mobilenetv3_large_minimal_100 59.07 40.93 81.14 18.86 3.92 224 0.875 bilinear
147 hrnet_w18_small 58.97 41.03 81.34 18.66 13.19 224 0.875 bilinear
148 gluon_resnet18_v1b 58.32 41.68 80.96 19.04 11.69 224 0.875 bicubic
149 resnet18 57.18 42.82 80.19 19.81 11.69 224 0.875 bilinear
150 dla60x_c 56.02 43.98 78.96 21.04 1.34 224 0.875 bilinear
151 tf_mobilenetv3_small_100 54.51 45.49 77.08 22.92 2.54 224 0.875 bilinear
152 dla46x_c 53.08 46.92 76.84 23.16 1.08 224 0.875 bilinear
153 dla46_c 52.2 47.8 75.68 24.32 1.31 224 0.875 bilinear
154 tf_mobilenetv3_small_075 52.15 47.85 75.46 24.54 2.04 224 0.875 bilinear
155 tf_mobilenetv3_small_minimal_100 49.53 50.47 73.05 26.95 2.04 224 0.875 bilinear

@ -294,6 +294,17 @@ model_list = [
_entry('res2next50', 'Res2NeXt-50', '1904.01169'),
_entry('dla60_res2net', 'Res2Net-DLA-60', '1904.01169'),
_entry('dla60_res2next', 'Res2NeXt-DLA-60', '1904.01169'),
## HRNet official impl weights
_entry('hrnet_w18_small', 'HRNet-W18-C-Small-V1', '1908.07919'),
_entry('hrnet_w18_small_v2', 'HRNet-W18-C-Small-V2', '1908.07919'),
_entry('hrnet_w18', 'HRNet-W18-C', '1908.07919'),
_entry('hrnet_w30', 'HRNet-W30-C', '1908.07919'),
_entry('hrnet_w32', 'HRNet-W32-C', '1908.07919'),
_entry('hrnet_w40', 'HRNet-W40-C', '1908.07919'),
_entry('hrnet_w44', 'HRNet-W44-C', '1908.07919'),
_entry('hrnet_w48', 'HRNet-W48-C', '1908.07919'),
_entry('hrnet_w64', 'HRNet-W64-C', '1908.07919'),
]
for m in model_list:

@ -10,7 +10,7 @@ import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d
from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
import re
@ -88,8 +88,8 @@ class DenseNet(nn.Module):
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0,
num_classes=1000, in_chans=3, global_pool='avg'):
self.global_pool = global_pool
self.num_classes = num_classes
self.drop_rate = drop_rate
super(DenseNet, self).__init__()
# First convolution
@ -117,32 +117,31 @@ class DenseNet(nn.Module):
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
self.num_features = num_features
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
def get_classifier(self):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = global_pool
self.num_classes = num_classes
del self.classifier
if num_classes:
self.classifier = nn.Linear(self.num_features, num_classes)
else:
self.classifier = None
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x, pool=True):
def forward_features(self, x):
x = self.features(x)
x = F.relu(x, inplace=True)
if pool:
x = select_adaptive_pool2d(x, self.global_pool)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
return self.classifier(self.forward_features(x, pool=True))
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.classifier(x)
return x
def _filter_pretrained(state_dict):

@ -276,8 +276,7 @@ class DLA(nn.Module):
self.num_features = channels[-1]
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Conv2d(self.num_features * self.global_pool.feat_mult(), num_classes,
kernel_size=1, stride=1, padding=0, bias=True)
self.fc = nn.Conv2d(self.num_features * self.global_pool.feat_mult(), num_classes, 1, bias=True)
for m in self.modules():
if isinstance(m, nn.Conv2d):
@ -302,15 +301,14 @@ class DLA(nn.Module):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.fc
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
if num_classes:
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
self.fc = nn.Conv2d(self.num_features * self.global_pool.feat_mult(), num_classes, 1, bias=True)
else:
self.fc = None
def forward_features(self, x, pool=True):
def forward_features(self, x):
x = self.base_layer(x)
x = self.level0(x)
x = self.level1(x)
@ -318,17 +316,15 @@ class DLA(nn.Module):
x = self.level3(x)
x = self.level4(x)
x = self.level5(x)
if pool:
x = self.global_pool(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.fc(x)
x = x.flatten(1)
return x
return x.flatten(1)
@register_model

@ -16,7 +16,7 @@ from collections import OrderedDict
from .registry import register_model
from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d
from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD
@ -160,7 +160,6 @@ class DPN(nn.Module):
super(DPN, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.global_pool = global_pool
self.b = b
bw_factor = 1 if small else 4
@ -218,32 +217,32 @@ class DPN(nn.Module):
self.features = nn.Sequential(blocks)
# Using 1x1 conv for the FC layer to allow the extra pooling scheme
self.classifier = nn.Conv2d(in_chs, num_classes, kernel_size=1, bias=True)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Conv2d(
self.num_features * self.global_pool.feat_mult(), num_classes, kernel_size=1, bias=True)
def get_classifier(self):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = global_pool
del self.classifier
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
if num_classes:
self.classifier = nn.Conv2d(self.num_features, num_classes, kernel_size=1, bias=True)
self.classifier = nn.Conv2d(
self.num_features * self.global_pool.feat_mult(), num_classes, kernel_size=1, bias=True)
else:
self.classifier = None
def forward_features(self, x, pool=True):
x = self.features(x)
if pool:
x = select_adaptive_pool2d(x, pool_type=self.global_pool)
return x
def forward_features(self, x):
return self.features(x)
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
out = self.classifier(x)
return out.view(out.size(0), -1)
return out.flatten(1)
@register_model

@ -211,8 +211,7 @@ class EfficientNet(nn.Module):
def __init__(self, block_args, num_classes=1000, num_features=1280, in_chans=3, stem_size=32,
channel_multiplier=1.0, channel_divisor=8, channel_min=None,
pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_connect_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
global_pool='avg', weight_init='goog'):
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'):
super(EfficientNet, self).__init__()
norm_kwargs = norm_kwargs or {}
@ -245,11 +244,7 @@ class EfficientNet(nn.Module):
# Classifier
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes)
for m in self.modules():
if weight_init == 'goog':
efficientnet_init_goog(m)
else:
efficientnet_init_default(m)
efficientnet_init_weights(self)
def as_sequential(self):
layers = [self.conv_stem, self.bn1, self.act1]
@ -262,14 +257,10 @@ class EfficientNet(nn.Module):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.classifier
if num_classes:
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes)
else:
self.classifier = None
self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x):
x = self.conv_stem(x)
@ -300,7 +291,7 @@ class EfficientNetFeatures(nn.Module):
def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='pre_pwl',
in_chans=3, stem_size=32, channel_multiplier=1.0, channel_divisor=8, channel_min=None,
output_stride=32, pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_connect_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'):
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None):
super(EfficientNetFeatures, self).__init__()
norm_kwargs = norm_kwargs or {}
@ -326,12 +317,7 @@ class EfficientNetFeatures(nn.Module):
self.feature_info = builder.features # builder provides info about feature channels for each block
self._in_chs = builder.in_chs
for m in self.modules():
if weight_init == 'goog':
efficientnet_init_goog(m)
else:
efficientnet_init_default(m)
efficientnet_init_weights(self)
if _DEBUG:
for k, v in self.feature_info.items():
print('Feature idx: {}: Name: {}, Channels: {}'.format(k, v['name'], v['num_chs']))

@ -358,9 +358,13 @@ class EfficientNetBuilder:
return stages
def efficientnet_init_goog(m, n=''):
# weight init as per Tensorflow Official impl
# https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
def _init_weight_goog(m, n=''):
""" Weight initialization as per Tensorflow official implementations.
Handles layers in EfficientNet, EfficientNet-CondConv, MixNet, MnasNet, MobileNetV3, etc:
* https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
* https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
"""
if isinstance(m, CondConv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
init_weight_fn = get_condconv_initializer(
@ -386,7 +390,8 @@ def efficientnet_init_goog(m, n=''):
m.bias.data.zero_()
def efficientnet_init_default(m, n=''):
def _init_weight_default(m, n=''):
""" Basic ResNet (Kaiming) style weight init"""
if isinstance(m, CondConv2d):
init_fn = get_condconv_initializer(partial(
nn.init.kaiming_normal_, mode='fan_out', nonlinearity='relu'), m.num_experts, m.weight_shape)
@ -400,3 +405,8 @@ def efficientnet_init_default(m, n=''):
nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear')
def efficientnet_init_weights(model: nn.Module, init_fn=None):
init_fn = init_fn or _init_weight_goog
for n, m in model.named_modules():
init_fn(m, n)

@ -13,7 +13,7 @@ from collections import OrderedDict
from .registry import register_model
from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d
from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
__all__ = ['Xception65', 'Xception71']
@ -185,7 +185,6 @@ class Xception65(nn.Module):
super(Xception65, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.global_pool = global_pool
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
if output_stride == 32:
entry_block3_stride = 2
@ -249,21 +248,18 @@ class Xception65(nn.Module):
1536, self.num_features, 3, stride=1, dilation=exit_block_dilations[1],
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.bn5 = norm_layer(num_features=self.num_features, **norm_kwargs)
self.fc = nn.Linear(in_features=self.num_features, out_features=num_classes)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = global_pool
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features, num_classes)
else:
self.fc = None
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x, pool=True):
def forward_features(self, x):
# Entry flow
x = self.conv1(x)
x = self.bn1(x)
@ -299,14 +295,11 @@ class Xception65(nn.Module):
x = self.conv5(x)
x = self.bn5(x)
x = self.relu(x)
if pool:
x = select_adaptive_pool2d(x, pool_type=self.global_pool)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate:
F.dropout(x, self.drop_rate, training=self.training)
x = self.fc(x)
@ -322,7 +315,6 @@ class Xception71(nn.Module):
super(Xception71, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.global_pool = global_pool
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
if output_stride == 32:
entry_block3_stride = 2
@ -393,21 +385,18 @@ class Xception71(nn.Module):
1536, self.num_features, 3, stride=1, dilation=exit_block_dilations[1],
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.bn5 = norm_layer(num_features=self.num_features, **norm_kwargs)
self.fc = nn.Linear(in_features=self.num_features, out_features=num_classes)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = global_pool
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features, num_classes)
else:
self.fc = None
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x, pool=True):
def forward_features(self, x):
# Entry flow
x = self.conv1(x)
x = self.bn1(x)
@ -443,14 +432,11 @@ class Xception71(nn.Module):
x = self.conv5(x)
x = self.bn5(x)
x = self.relu(x)
if pool:
x = select_adaptive_pool2d(x, pool_type=self.global_pool)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate:
F.dropout(x, self.drop_rate, training=self.training)
x = self.fc(x)

@ -17,20 +17,18 @@ import os
import logging
import functools
import numpy as np
import torch
import torch.nn as nn
import torch._utils
import torch.nn.functional as F
from .resnet import BasicBlock, Bottleneck # leveraging ResNet blocks w/ additional features like SE
from .registry import register_model
from .helpers import load_pretrained
from .helpers import load_pretrained
from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
BN_MOMENTUM = 0.1
_BN_MOMENTUM = 0.1
logger = logging.getLogger(__name__)
@ -46,17 +44,29 @@ def _cfg(url='', **kwargs):
default_cfgs = {
'hrnet_w18_small': _cfg(url=''),
'hrnet_w18_small_v2': _cfg(url=''),
'hrnet_w18': _cfg(url=''),
'hrnet_w30': _cfg(url=''),
'hrnet_w32': _cfg(url=''),
'hrnet_w40': _cfg(url=''),
'hrnet_w44': _cfg(url=''),
'hrnet_w48': _cfg(url=''),
'hrnet_w18_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth'),
'hrnet_w18_small_v2': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth'),
'hrnet_w18': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth'),
'hrnet_w30': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth'),
'hrnet_w32': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth'),
'hrnet_w40': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth'),
'hrnet_w44': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth'),
'hrnet_w48': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth'),
'hrnet_w64': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth'),
}
cfg_cls_hrnet_w18_small = dict(
cfg_cls = dict(
hrnet_w18_small=dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -89,10 +99,10 @@ cfg_cls_hrnet_w18_small = dict(
NUM_CHANNELS=(16, 32, 64, 128),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w18_small_v2 = dict(
hrnet_w18_small_v2 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -125,9 +135,10 @@ cfg_cls_hrnet_w18_small_v2 = dict(
NUM_CHANNELS=(18, 36, 72, 144),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w18 = dict(
hrnet_w18 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -160,10 +171,10 @@ cfg_cls_hrnet_w18 = dict(
NUM_CHANNELS=(18, 36, 72, 144),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w30 = dict(
hrnet_w30 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -196,10 +207,10 @@ cfg_cls_hrnet_w30 = dict(
NUM_CHANNELS=(30, 60, 120, 240),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w32 = dict(
hrnet_w32 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -232,9 +243,10 @@ cfg_cls_hrnet_w32 = dict(
NUM_CHANNELS=(32, 64, 128, 256),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w40 = dict(
hrnet_w40 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -267,10 +279,10 @@ cfg_cls_hrnet_w40 = dict(
NUM_CHANNELS=(40, 80, 160, 320),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w44 = dict(
hrnet_w44 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -303,10 +315,10 @@ cfg_cls_hrnet_w44 = dict(
NUM_CHANNELS=(44, 88, 176, 352),
FUSE_METHOD='SUM',
),
)
),
cfg_cls_hrnet_w48 = dict(
hrnet_w48 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
@ -339,85 +351,44 @@ cfg_cls_hrnet_w48 = dict(
NUM_CHANNELS=(48, 96, 192, 384),
FUSE_METHOD='SUM',
),
)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(
planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(
planes * self.expansion, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
),
return out
hrnet_w64 = dict(
STEM_WIDTH=64,
STAGE1=dict(
NUM_MODULES=1,
NUM_BRANCHES=1,
BLOCK='BOTTLENECK',
NUM_BLOCKS=(4,),
NUM_CHANNELS=(64,),
FUSE_METHOD='SUM',
),
STAGE2=dict(
NUM_MODULES=1,
NUM_BRANCHES=2,
BLOCK='BASIC',
NUM_BLOCKS=(4, 4),
NUM_CHANNELS=(64, 128),
FUSE_METHOD='SUM'
),
STAGE3=dict(
NUM_MODULES=4,
NUM_BRANCHES=3,
BLOCK='BASIC',
NUM_BLOCKS=(4, 4, 4),
NUM_CHANNELS=(64, 128, 256),
FUSE_METHOD='SUM'
),
STAGE4=dict(
NUM_MODULES=3,
NUM_BRANCHES=4,
BLOCK='BASIC',
NUM_BLOCKS=(4, 4, 4, 4),
NUM_CHANNELS=(64, 128, 256, 512),
FUSE_METHOD='SUM',
),
)
)
class HighResolutionModule(nn.Module):
@ -466,11 +437,10 @@ class HighResolutionModule(nn.Module):
nn.Conv2d(
self.num_inchannels[branch_index], num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM),
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=_BN_MOMENTUM),
)
layers = []
layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample))
layers = [block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample)]
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index]))
@ -479,7 +449,6 @@ class HighResolutionModule(nn.Module):
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(self._make_one_branch(i, block, num_blocks, num_channels))
@ -498,7 +467,7 @@ class HighResolutionModule(nn.Module):
if j > i:
fuse_layer.append(nn.Sequential(
nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False),
nn.BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM),
nn.BatchNorm2d(num_inchannels[i], momentum=_BN_MOMENTUM),
nn.Upsample(scale_factor=2 ** (j - i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
@ -509,12 +478,12 @@ class HighResolutionModule(nn.Module):
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False),
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM)))
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=_BN_MOMENTUM)))
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False),
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM),
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=_BN_MOMENTUM),
nn.ReLU(False)))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
@ -552,13 +521,16 @@ blocks_dict = {
class HighResolutionNet(nn.Module):
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg'):
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0):
super(HighResolutionNet, self).__init__()
self.conv1 = nn.Conv2d(in_chans, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.num_classes = num_classes
self.drop_rate = drop_rate
stem_width = cfg['STEM_WIDTH']
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM)
self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.stage1_cfg = cfg['STAGE1']
@ -590,9 +562,10 @@ class HighResolutionNet(nn.Module):
self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True)
# Classification Head
self.num_features = 2048
self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head(pre_stage_channels)
self.classifier = nn.Linear(2048, num_classes)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
self.init_weights()
@ -616,7 +589,7 @@ class HighResolutionNet(nn.Module):
downsamp_module = nn.Sequential(
nn.Conv2d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM),
nn.BatchNorm2d(out_channels, momentum=_BN_MOMENTUM),
nn.ReLU(inplace=True)
)
downsamp_modules.append(downsamp_module)
@ -625,9 +598,9 @@ class HighResolutionNet(nn.Module):
final_layer = nn.Sequential(
nn.Conv2d(
in_channels=head_channels[3] * head_block.expansion,
out_channels=2048, kernel_size=1, stride=1, padding=0
out_channels=self.num_features, kernel_size=1, stride=1, padding=0
),
nn.BatchNorm2d(2048, momentum=BN_MOMENTUM),
nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM),
nn.ReLU(inplace=True)
)
@ -643,7 +616,7 @@ class HighResolutionNet(nn.Module):
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(nn.Sequential(
nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False),
nn.BatchNorm2d(num_channels_cur_layer[i], momentum=BN_MOMENTUM),
nn.BatchNorm2d(num_channels_cur_layer[i], momentum=_BN_MOMENTUM),
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
@ -654,7 +627,7 @@ class HighResolutionNet(nn.Module):
outchannels = num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels
conv3x3s.append(nn.Sequential(
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False),
nn.BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
nn.BatchNorm2d(outchannels, momentum=_BN_MOMENTUM),
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv3x3s))
@ -665,11 +638,10 @@ class HighResolutionNet(nn.Module):
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
nn.BatchNorm2d(planes * block.expansion, momentum=_BN_MOMENTUM),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
layers = [block(inplanes, planes, stride, downsample)]
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes))
@ -699,8 +671,7 @@ class HighResolutionNet(nn.Module):
return nn.Sequential(*modules), num_inchannels
def init_weights(self, pretrained='', ):
logger.info('=> init weights from normal distribution')
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
@ -709,7 +680,16 @@ class HighResolutionNet(nn.Module):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
def get_classifier(self):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
@ -746,124 +726,79 @@ class HighResolutionNet(nn.Module):
y = self.incre_modules[0](y_list[0])
for i in range(len(self.downsamp_modules)):
y = self.incre_modules[i + 1](y_list[i + 1]) + self.downsamp_modules[i](y)
y = self.final_layer(y)
if torch._C._get_tracing_state():
y = y.flatten(start_dim=2).mean(dim=2)
else:
y = F.avg_pool2d(y, kernel_size=y.size()[2:]).view(y.size(0), -1)
y = self.classifier(y)
return y
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.classifier(x)
return x
def _create_model(variant, pretrained, model_kwargs):
if model_kwargs.pop('features_only', False):
assert False, 'Not Implemented' # TODO
load_strict = False
model_kwargs.pop('num_classes', 0)
model_class = HighResolutionNet
else:
load_strict = True
model_class = HighResolutionNet
@register_model
def hrnet_w18_small(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w18_small']
model = HighResolutionNet(cfg_cls_hrnet_w18_small, **kwargs)
model.default_cfg = default_cfg
model = model_class(cfg_cls[variant], **model_kwargs)
model.default_cfg = default_cfgs[variant]
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
num_classes=model_kwargs.get('num_classes', 0),
in_chans=model_kwargs.get('in_chans', 3),
strict=load_strict)
return model
@register_model
def hrnet_w18_small(pretrained=True, **kwargs):
return _create_model('hrnet_w18_small', pretrained, kwargs)
@register_model
def hrnet_w18_small_v2(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w18_small_v2']
model = HighResolutionNet(cfg_cls_hrnet_w18_small_v2, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w18_small_v2', pretrained, kwargs)
@register_model
def hrnet_w18(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w18']
model = HighResolutionNet(cfg_cls_hrnet_w18, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w18', pretrained, kwargs)
@register_model
def hrnet_w30(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w30']
model = HighResolutionNet(cfg_cls_hrnet_w30, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w30', pretrained, kwargs)
@register_model
def hrnet_w32(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w32']
model = HighResolutionNet(cfg_cls_hrnet_w32, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w32', pretrained, kwargs)
@register_model
def hrnet_w40(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w40']
model = HighResolutionNet(cfg_cls_hrnet_w40, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w40', pretrained, kwargs)
@register_model
def hrnet_w44(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w44']
model = HighResolutionNet(cfg_cls_hrnet_w44, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w44', pretrained, kwargs)
@register_model
def hrnet_w48(pretrained=True, **kwargs):
default_cfg = default_cfgs['hrnet_w48']
model = HighResolutionNet(cfg_cls_hrnet_w48, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model,
default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3))
return model
return _create_model('hrnet_w48', pretrained, kwargs)
@register_model
def hrnet_w64(pretrained=True, **kwargs):
return _create_model('hrnet_w64', pretrained, kwargs)

@ -8,7 +8,7 @@ import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d
from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
__all__ = ['InceptionResnetV2']
@ -226,7 +226,6 @@ class InceptionResnetV2(nn.Module):
def __init__(self, num_classes=1001, in_chans=3, drop_rate=0., global_pool='avg'):
super(InceptionResnetV2, self).__init__()
self.drop_rate = drop_rate
self.global_pool = global_pool
self.num_classes = num_classes
self.num_features = 1536
@ -287,22 +286,20 @@ class InceptionResnetV2(nn.Module):
)
self.block8 = Block8(noReLU=True)
self.conv2d_7b = BasicConv2d(2080, self.num_features, kernel_size=1, stride=1)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
# NOTE some variants/checkpoints for this model may have 'last_linear' as the name for the FC
self.classif = nn.Linear(self.num_features, num_classes)
self.classif = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
def get_classifier(self):
return self.classif
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = global_pool
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.classif
if num_classes:
self.classif = torch.nn.Linear(self.num_features, num_classes)
else:
self.classif = None
self.classif = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x, pool=True):
def forward_features(self, x):
x = self.conv2d_1a(x)
x = self.conv2d_2a(x)
x = self.conv2d_2b(x)
@ -318,14 +315,11 @@ class InceptionResnetV2(nn.Module):
x = self.repeat_2(x)
x = self.block8(x)
x = self.conv2d_7b(x)
if pool:
x = select_adaptive_pool2d(x, self.global_pool)
#x = F.avg_pool2d(x, 8, count_include_pad=False)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
x = self.forward_features(x, pool=True)
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.classif(x)

@ -8,7 +8,7 @@ import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d
from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
__all__ = ['InceptionV4']
@ -244,7 +244,6 @@ class InceptionV4(nn.Module):
def __init__(self, num_classes=1001, in_chans=3, drop_rate=0., global_pool='avg'):
super(InceptionV4, self).__init__()
self.drop_rate = drop_rate
self.global_pool = global_pool
self.num_classes = num_classes
self.num_features = 1536
@ -272,25 +271,24 @@ class InceptionV4(nn.Module):
Inception_C(),
Inception_C(),
)
self.last_linear = nn.Linear(self.num_features, num_classes)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.last_linear = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
def get_classifier(self):
return self.classif
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = global_pool
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
self.classif = nn.Linear(self.num_features, num_classes)
self.last_linear = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x, pool=True):
x = self.features(x)
if pool:
x = select_adaptive_pool2d(x, self.global_pool)
x = x.view(x.size(0), -1)
return x
def forward_features(self, x):
return self.features(x)
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.last_linear(x)

@ -75,8 +75,7 @@ class MobileNetV3(nn.Module):
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
channel_multiplier=1.0, pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_connect_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
global_pool='avg', weight_init='goog'):
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'):
super(MobileNetV3, self).__init__()
self.num_classes = num_classes
@ -107,11 +106,7 @@ class MobileNetV3(nn.Module):
# Classifier
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes)
for m in self.modules():
if weight_init == 'goog':
efficientnet_init_goog(m)
else:
efficientnet_init_default(m)
efficientnet_init_weights(self)
def as_sequential(self):
layers = [self.conv_stem, self.bn1, self.act1]
@ -126,12 +121,8 @@ class MobileNetV3(nn.Module):
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.classifier
if num_classes:
self.classifier = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes)
else:
self.classifier = None
self.num_features * self.global_pool.feat_mult(), num_classes) if self.num_classes else None
def forward_features(self, x):
x = self.conv_stem(x)
@ -161,7 +152,7 @@ class MobileNetV3Features(nn.Module):
def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='pre_pwl',
in_chans=3, stem_size=16, channel_multiplier=1.0, output_stride=32, pad_type='',
act_layer=nn.ReLU, drop_rate=0., drop_connect_rate=0., se_kwargs=None,
norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'):
norm_layer=nn.BatchNorm2d, norm_kwargs=None):
super(MobileNetV3Features, self).__init__()
norm_kwargs = norm_kwargs or {}
@ -187,12 +178,7 @@ class MobileNetV3Features(nn.Module):
self.feature_info = builder.features # builder provides info about feature channels for each block
self._in_chs = builder.in_chs
for m in self.modules():
if weight_init == 'goog':
efficientnet_init_goog(m)
else:
efficientnet_init_default(m)
efficientnet_init_weights(self)
if _DEBUG:
for k, v in self.feature_info.items():
print('Feature idx: {}: Name: {}, Channels: {}'.format(k, v['name'], v['num_chs']))

@ -556,8 +556,18 @@ class NASNetALarge(nn.Module):
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.last_linear = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
def forward_features(self, input, pool=True):
x_conv0 = self.conv0(input)
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
del self.last_linear
self.last_linear = nn.Linear(
self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x):
x_conv0 = self.conv0(x)
x_stem_0 = self.cell_stem_0(x_conv0)
x_stem_1 = self.cell_stem_1(x_conv0, x_stem_0)
@ -586,13 +596,11 @@ class NASNetALarge(nn.Module):
x_cell_16 = self.cell_16(x_cell_15, x_cell_14)
x_cell_17 = self.cell_17(x_cell_16, x_cell_15)
x = self.relu(x_cell_17)
if pool:
x = self.global_pool(x)
x = x.view(x.size(0), -1)
return x
def forward(self, input):
x = self.forward_features(input)
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0:
x = F.dropout(x, self.drop_rate, training=self.training)
x = self.last_linear(x)

@ -355,7 +355,7 @@ class PNASNet5Large(nn.Module):
else:
self.last_linear = None
def forward_features(self, x, pool=True):
def forward_features(self, x):
x_conv_0 = self.conv_0(x)
x_stem_0 = self.cell_stem_0(x_conv_0)
x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0)
@ -372,13 +372,11 @@ class PNASNet5Large(nn.Module):
x_cell_10 = self.cell_10(x_cell_8, x_cell_9)
x_cell_11 = self.cell_11(x_cell_9, x_cell_10)
x = self.relu(x_cell_11)
if pool:
x = self.global_pool(x)
x = x.view(x.size(0), -1)
return x
def forward(self, input):
x = self.forward_features(input)
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0:
x = F.dropout(x, self.drop_rate, training=self.training)
x = self.last_linear(x)

@ -17,7 +17,7 @@ from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
__all__ = ['ResNet'] # model_registry will add each entrypoint fn to this
__all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
@ -374,12 +374,9 @@ class ResNet(nn.Module):
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
else:
self.fc = None
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, x, pool=True):
def forward_features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
@ -389,14 +386,11 @@ class ResNet(nn.Module):
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if pool:
x = self.global_pool(x)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.fc(x)

@ -274,6 +274,7 @@ class SENet(nn.Module):
super(SENet, self).__init__()
self.inplanes = inplanes
self.num_classes = num_classes
self.drop_rate = drop_rate
if input_3x3:
layer0_modules = [
('conv1', nn.Conv2d(in_chans, 64, 3, stride=2, padding=1, bias=False)),
@ -337,7 +338,6 @@ class SENet(nn.Module):
downsample_padding=downsample_padding
)
self.avg_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.drop_rate = drop_rate
self.num_features = 512 * block.expansion
self.last_linear = nn.Linear(self.num_features, num_classes)
@ -366,26 +366,25 @@ class SENet(nn.Module):
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes):
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.avg_pool = SelectAdaptivePool2d(pool_type=global_pool)
del self.last_linear
if num_classes:
self.last_linear = nn.Linear(self.num_features, num_classes)
self.last_linear = nn.Linear(self.num_features * self.avg_pool.feat_mult(), num_classes)
else:
self.last_linear = None
def forward_features(self, x, pool=True):
def forward_features(self, x):
x = self.layer0(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if pool:
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
return x
def logits(self, x):
x = self.avg_pool(x).flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.last_linear(x)

@ -20,7 +20,7 @@ class TestTimePoolHead(nn.Module):
self.base.reset_classifier(0) # delete original fc layer
def forward(self, x):
x = self.base.forward_features(x, pool=False)
x = self.base.forward_features(x)
x = F.avg_pool2d(x, kernel_size=self.original_pool, stride=1)
x = self.fc(x)
x = adaptive_avgmax_pool2d(x, 1)

@ -29,7 +29,7 @@ import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d
from .adaptive_avgmax_pool import SelectAdaptivePool2d
__all__ = ['Xception']
@ -163,7 +163,8 @@ class Xception(nn.Module):
self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(self.num_features)
self.fc = nn.Linear(self.num_features, num_classes)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
# #------- init weights --------
for m in self.modules():
@ -178,15 +179,12 @@ class Xception(nn.Module):
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = global_pool
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features, num_classes)
else:
self.fc = None
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None
def forward_features(self, input, pool=True):
x = self.conv1(input)
def forward_features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
@ -214,14 +212,11 @@ class Xception(nn.Module):
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
if pool:
x = select_adaptive_pool2d(x, pool_type=self.global_pool)
x = x.view(x.size(0), -1)
return x
def forward(self, input):
x = self.forward_features(input)
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
if self.drop_rate:
F.dropout(x, self.drop_rate, training=self.training)
x = self.fc(x)

Loading…
Cancel
Save