Fix tests for rank-4 output where feature channels dim is -1 (3) and not 1

pull/1249/head
Ross Wightman 3 years ago
parent d79f3d9d1e
commit 39b725e1c9

@ -202,13 +202,15 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
pytest.skip("Fixed input size model > limit.")
input_tensor = torch.randn((batch_size, *input_size))
feat_dim = getattr(model, 'feature_dim', None)
outputs = model.forward_features(input_tensor)
if isinstance(outputs, (tuple, list)):
# cannot currently verify multi-tensor output.
pass
else:
feat_dim = -1 if outputs.ndim == 3 else 1
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
@ -216,14 +218,16 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
feat_dim = -1 if outputs.ndim == 3 else 1
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features, 'pooled num_features != config'
model = create_model(model_name, pretrained=False, num_classes=0).eval()
outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
feat_dim = -1 if outputs.ndim == 3 else 1
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
# check classifier name matches default_cfg

@ -288,6 +288,7 @@ class Sequencer2D(nn.Module):
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = embed_dims[-1] # num_features for consistency with other models
self.feature_dim = -1 # channel dim index for feature outputs (rank 4, NHWC)
self.embed_dims = embed_dims
self.stem = PatchEmbed(
img_size=img_size, patch_size=patch_sizes[0], in_chans=in_chans,
@ -333,7 +334,7 @@ class Sequencer2D(nn.Module):
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if self.global_pool is not None:
if global_pool is not None:
assert global_pool in ('', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

Loading…
Cancel
Save