Fix tests for rank-4 output where feature channels dim is -1 (3) and not 1

pull/1249/head
Ross Wightman 3 years ago
parent d79f3d9d1e
commit 39b725e1c9

@ -202,12 +202,14 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
pytest.skip("Fixed input size model > limit.") pytest.skip("Fixed input size model > limit.")
input_tensor = torch.randn((batch_size, *input_size)) input_tensor = torch.randn((batch_size, *input_size))
feat_dim = getattr(model, 'feature_dim', None)
outputs = model.forward_features(input_tensor) outputs = model.forward_features(input_tensor)
if isinstance(outputs, (tuple, list)): if isinstance(outputs, (tuple, list)):
# cannot currently verify multi-tensor output. # cannot currently verify multi-tensor output.
pass pass
else: else:
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1 feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features assert outputs.shape[feat_dim] == model.num_features
@ -216,6 +218,7 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
outputs = model.forward(input_tensor) outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)): if isinstance(outputs, (tuple, list)):
outputs = outputs[0] outputs = outputs[0]
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1 feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features, 'pooled num_features != config' assert outputs.shape[feat_dim] == model.num_features, 'pooled num_features != config'
@ -223,6 +226,7 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
outputs = model.forward(input_tensor) outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)): if isinstance(outputs, (tuple, list)):
outputs = outputs[0] outputs = outputs[0]
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1 feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features assert outputs.shape[feat_dim] == model.num_features

@ -288,6 +288,7 @@ class Sequencer2D(nn.Module):
self.num_classes = num_classes self.num_classes = num_classes
self.global_pool = global_pool self.global_pool = global_pool
self.num_features = embed_dims[-1] # num_features for consistency with other models self.num_features = embed_dims[-1] # num_features for consistency with other models
self.feature_dim = -1 # channel dim index for feature outputs (rank 4, NHWC)
self.embed_dims = embed_dims self.embed_dims = embed_dims
self.stem = PatchEmbed( self.stem = PatchEmbed(
img_size=img_size, patch_size=patch_sizes[0], in_chans=in_chans, img_size=img_size, patch_size=patch_sizes[0], in_chans=in_chans,
@ -333,7 +334,7 @@ class Sequencer2D(nn.Module):
def reset_classifier(self, num_classes, global_pool=None): def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes self.num_classes = num_classes
if self.global_pool is not None: if global_pool is not None:
assert global_pool in ('', 'avg') assert global_pool in ('', 'avg')
self.global_pool = global_pool self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

Loading…
Cancel
Save