|
|
|
@ -58,15 +58,18 @@ default_cfgs = {
|
|
|
|
|
'resnet101': _cfg(url='', interpolation='bicubic'),
|
|
|
|
|
'resnet101d': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
|
|
|
|
|
'resnet152': _cfg(url='', interpolation='bicubic'),
|
|
|
|
|
'resnet152d': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
|
|
|
|
|
'resnet200': _cfg(url='', interpolation='bicubic'),
|
|
|
|
|
'resnet200d': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
|
|
|
|
|
'resnet200d_320': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), crop_pct=1.0, pool_size=(10, 10)),
|
|
|
|
|
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
|
|
|
|
|
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
|
|
|
|
|
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
|
|
|
|
@ -149,7 +152,7 @@ default_cfgs = {
|
|
|
|
|
interpolation='bicubic'),
|
|
|
|
|
'seresnet152d': _cfg(
|
|
|
|
|
url='',
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
|
|
|
|
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
|
|
|
|
|
'seresnext26_32x4d': _cfg(
|
|
|
|
@ -741,6 +744,15 @@ def resnet200d(pretrained=False, **kwargs):
|
|
|
|
|
return _create_resnet('resnet200d', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def resnet200d_320(pretrained=False, **kwargs):
|
|
|
|
|
"""Constructs a ResNet-200-D model. NOTE: Duplicate of 200D above w/ diff default cfg for 320x320.
|
|
|
|
|
"""
|
|
|
|
|
model_args = dict(
|
|
|
|
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
|
|
|
|
|
return _create_resnet('resnet200d_320', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def tv_resnet34(pretrained=False, **kwargs):
|
|
|
|
|
"""Constructs a ResNet-34 model with original Torchvision weights.
|
|
|
|
|