Add pool_size to default cfgs for new models to prevent tests from failing. Add explicit 200D_320 model entrypoint for next benchmark run.

pull/322/head
Ross Wightman 4 years ago
parent 7a75b8d033
commit 392595c7eb

@ -58,15 +58,18 @@ default_cfgs = {
'resnet101': _cfg(url='', interpolation='bicubic'), 'resnet101': _cfg(url='', interpolation='bicubic'),
'resnet101d': _cfg( 'resnet101d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94), interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
'resnet152': _cfg(url='', interpolation='bicubic'), 'resnet152': _cfg(url='', interpolation='bicubic'),
'resnet152d': _cfg( 'resnet152d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94), interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
'resnet200': _cfg(url='', interpolation='bicubic'), 'resnet200': _cfg(url='', interpolation='bicubic'),
'resnet200d': _cfg( 'resnet200d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94), interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
'resnet200d_320': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), crop_pct=1.0, pool_size=(10, 10)),
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'), 'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'), 'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'), 'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
@ -149,7 +152,7 @@ default_cfgs = {
interpolation='bicubic'), interpolation='bicubic'),
'seresnet152d': _cfg( 'seresnet152d': _cfg(
url='', url='',
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94), interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py # Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
'seresnext26_32x4d': _cfg( 'seresnext26_32x4d': _cfg(
@ -741,6 +744,15 @@ def resnet200d(pretrained=False, **kwargs):
return _create_resnet('resnet200d', pretrained, **model_args) return _create_resnet('resnet200d', pretrained, **model_args)
@register_model
def resnet200d_320(pretrained=False, **kwargs):
"""Constructs a ResNet-200-D model. NOTE: Duplicate of 200D above w/ diff default cfg for 320x320.
"""
model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('resnet200d_320', pretrained, **model_args)
@register_model @register_model
def tv_resnet34(pretrained=False, **kwargs): def tv_resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model with original Torchvision weights. """Constructs a ResNet-34 model with original Torchvision weights.

Loading…
Cancel
Save