|
|
@ -225,11 +225,12 @@ class BenchmarkRunner:
|
|
|
|
self.num_classes = self.model.num_classes
|
|
|
|
self.num_classes = self.model.num_classes
|
|
|
|
self.param_count = count_params(self.model)
|
|
|
|
self.param_count = count_params(self.model)
|
|
|
|
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count))
|
|
|
|
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size)
|
|
|
|
self.scripted = False
|
|
|
|
self.scripted = False
|
|
|
|
if torchscript:
|
|
|
|
if torchscript:
|
|
|
|
self.model = torch.jit.script(self.model)
|
|
|
|
self.model = torch.jit.script(self.model)
|
|
|
|
self.scripted = True
|
|
|
|
self.scripted = True
|
|
|
|
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size)
|
|
|
|
|
|
|
|
self.input_size = data_config['input_size']
|
|
|
|
self.input_size = data_config['input_size']
|
|
|
|
self.batch_size = kwargs.pop('batch_size', 256)
|
|
|
|
self.batch_size = kwargs.pop('batch_size', 256)
|
|
|
|
|
|
|
|
|
|
|
|