post quantization using graph_fx(beta)

pull/240/head
taehoon.kim 4 years ago
parent 15d1dbc896
commit 2b2e9c77fd

@ -1,4 +1,4 @@
#!/usr/bin/env python #!/usr/bin/env python3
""" ImageNet Validation Script """ ImageNet Validation Script
This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained
@ -17,18 +17,29 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.parallel import torch.nn.parallel
from collections import OrderedDict from collections import OrderedDict
import torch.quantization from contextlib import suppress
try: import torch.quantization
from apex import amp #currently, quantization only runs on CPUs
has_apex = True os.environ['CUDA_VISIBLE_DEVICES'] = ""
except ImportError:
has_apex = False
from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models
from timm.data import Dataset, DatasetTar, resolve_data_config, RealLabelsImagenet from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet
from timm.data.quant_loader import create_loader from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_legacy
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging
#has_apex = False
#try:
# from apex import amp
# has_apex = True
#except ImportError:
# pass
#as_native_amp = False
#try:
# if getattr(torch.cuda.amp, 'autocast') is not None:
# has_native_amp = True
#except AttributeError:
# pass
torch.backends.cudnn.benchmark = True torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('validate') _logger = logging.getLogger('validate')
@ -37,18 +48,26 @@ _logger = logging.getLogger('validate')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('data', metavar='DIR', parser.add_argument('data', metavar='DIR',
help='path to dataset') help='path to dataset')
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
#argument for calibration dataset
parser.add_argument('--calib-data', metavar='DIR', parser.add_argument('--calib-data', metavar='DIR',
help='path to calibration dataset') help='path to calibration dataset')
parser.add_argument('--model', '-m', metavar='MODEL', default='dpn92', # quantization option(weight only, dynamic, static)
parser.add_argument('--quant_option', metavar='NAME', default='static',
help='quantization option (weight_only, dynamic, static) (default: static)')
parser.add_argument('--split', metavar='NAME', default='validation',
help='dataset split (default: validation)')
parser.add_argument('--model', '-m', metavar='NAME', default='dpn92',
help='model architecture (default: dpn92)') help='model architecture (default: dpn92)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)') help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int, parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)') metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--calib-iter', default=100, type=int,
metavar='N', help='Train set iterations for calibration before quantization')
parser.add_argument('--img-size', default=None, type=int, parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty') metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--crop-pct', default=None, type=float, parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop pct') metavar='N', help='Input image center crop pct')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
@ -57,17 +76,22 @@ parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD'
help='Override std deviation of of dataset') help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)') help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=1000, parser.add_argument('--num-classes', type=int, default=None,
help='Number classes in dataset') help='Number classes in dataset')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")') help='path to class to idx mapping file (default: "")')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--log-freq', default=10, type=int, parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)') metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)') help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model') help='use pre-trained model')
parser.add_argument('--num-gpu', type=int, default=1, #parser.add_argument('--num-gpu', type=int, default=1,
# help='Number of GPUS to use')
#num-gpu is set to zero(no gpu usage)
parser.add_argument('--num-gpu', type=int, default=0,
help='Number of GPUS to use') help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true', parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
help='disable test time pool') help='disable test time pool')
@ -75,8 +99,14 @@ parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher') help='disable fast prefetcher')
parser.add_argument('--pin-mem', action='store_true', default=False, parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--amp', action='store_true', default=False, parser.add_argument('--channels-last', action='store_true', default=False,
help='Use AMP mixed precision') help='Use channels_last memory layout')
#parser.add_argument('--amp', action='store_true', default=False,
# help='Use AMP mixed precision. Defaults to Apex, fallback to native Torch AMP.')
#parser.add_argument('--apex-amp', action='store_true', default=False,
# help='Use NVIDIA Apex AMP mixed precision')
#parser.add_argument('--native-amp', action='store_true', default=False,
# help='Use Native Torch AMP mixed precision')
parser.add_argument('--tf-preprocessing', action='store_true', default=False, parser.add_argument('--tf-preprocessing', action='store_true', default=False,
help='Use Tensorflow preprocessing pipeline (require CPU TF installed') help='Use Tensorflow preprocessing pipeline (require CPU TF installed')
parser.add_argument('--use-ema', dest='use_ema', action='store_true', parser.add_argument('--use-ema', dest='use_ema', action='store_true',
@ -93,24 +123,28 @@ parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME',
help='Valid label indices txt file for validation of partial label space') help='Valid label indices txt file for validation of partial label space')
def set_jit_legacy():
""" Set JIT executor to legacy w/ support for op fusion
This is hopefully a temporary need in 1.5/1.5.1/1.6 to restore performance due to changes
in the JIT exectutor. These API are not supported so could change.
"""
#
assert hasattr(torch._C, '_jit_set_profiling_executor'), "Old JIT behavior doesn't exist!"
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._jit_override_can_fuse_on_gpu(True)
#torch._C._jit_set_texpr_fuser_enabled(True)
def validate(args): def validate(args):
# might as well try to validate something # might as well try to validate something
args.pretrained = args.pretrained or not args.checkpoint args.pretrained = args.pretrained or not args.checkpoint
args.prefetcher = not args.no_prefetcher args.prefetcher = not args.no_prefetcher
# amp_autocast = suppress # do nothing
# if args.amp:
# if has_native_amp:
# args.native_amp = True
# elif has_apex:
# args.apex_amp = True
# else:
# _logger.warning("Neither APEX or Native Torch AMP is available.")
# assert not args.apex_amp or not args.native_amp, "Only one AMP mode should be set."
# if args.native_amp:
# amp_autocast = torch.cuda.amp.autocast
# _logger.info('Validating in mixed precision with native PyTorch AMP.')
# elif args.apex_amp:
# _logger.info('Validating in mixed precision with NVIDIA APEX AMP.')
# else:
# _logger.info('Validating in float32. AMP not enabled.')
if args.legacy_jit: if args.legacy_jit:
set_jit_legacy() set_jit_legacy()
@ -120,7 +154,11 @@ def validate(args):
pretrained=args.pretrained, pretrained=args.pretrained,
num_classes=args.num_classes, num_classes=args.num_classes,
in_chans=3, in_chans=3,
global_pool=args.gp,
scriptable=args.torchscript) scriptable=args.torchscript)
if args.num_classes is None:
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
args.num_classes = model.num_classes
if args.checkpoint: if args.checkpoint:
load_checkpoint(model, args.checkpoint, args.use_ema) load_checkpoint(model, args.checkpoint, args.use_ema)
@ -128,22 +166,38 @@ def validate(args):
param_count = sum([m.numel() for m in model.parameters()]) param_count = sum([m.numel() for m in model.parameters()])
_logger.info('Model %s created, param count: %d' % (args.model, param_count)) _logger.info('Model %s created, param count: %d' % (args.model, param_count))
data_config = resolve_data_config(vars(args), model=model) data_config = resolve_data_config(vars(args), model=model, use_test_size=True)
model, test_time_pool = apply_test_time_pool(model, data_config, args) test_time_pool = False
if not args.no_test_pool:
model, test_time_pool = apply_test_time_pool(model, data_config, use_test_size=True)
if args.torchscript: if args.torchscript:
torch.jit.optimized_execution(True) torch.jit.optimized_execution(True)
model = torch.jit.script(model) model = torch.jit.script(model)
# model = model.cuda()
# if args.apex_amp:
# model = amp.initialize(model, opt_level='O1')
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
# if args.num_gpu > 1:
# model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu)))
# criterion = nn.CrossEntropyLoss().cuda()
criterion = nn.CrossEntropyLoss() criterion = nn.CrossEntropyLoss()
dataset = create_dataset(
root=args.data, name=args.dataset, split=args.split,
load_bytes=args.tf_preprocessing, class_map=args.class_map)
# added for post quantization calibration
calib_dataset = create_dataset(
root=args.data, name=args.dataset, split=args.split,
load_bytes=args.tf_preprocessing, class_map=args.class_map)
if os.path.splitext(args.data)[1] == '.tar' and os.path.isfile(args.data):
dataset = DatasetTar(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
calib_dataset = DatasetTar(args.calib_data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
else:
dataset = Dataset(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
calib_dataset = Dataset(args.calib_data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
if args.valid_labels: if args.valid_labels:
with open(args.valid_labels, 'r') as f: with open(args.valid_labels, 'r') as f:
valid_labels = {int(line.rstrip()) for line in f} valid_labels = {int(line.rstrip()) for line in f}
@ -169,6 +223,8 @@ def validate(args):
crop_pct=crop_pct, crop_pct=crop_pct,
pin_memory=args.pin_mem, pin_memory=args.pin_mem,
tf_preprocessing=args.tf_preprocessing) tf_preprocessing=args.tf_preprocessing)
#Also create loader for calibration dataset
calib_loader = create_loader( calib_loader = create_loader(
calib_dataset, calib_dataset,
input_size=data_config['input_size'], input_size=data_config['input_size'],
@ -181,31 +237,37 @@ def validate(args):
crop_pct=crop_pct, crop_pct=crop_pct,
pin_memory=args.pin_mem, pin_memory=args.pin_mem,
tf_preprocessing=args.tf_preprocessing) tf_preprocessing=args.tf_preprocessing)
batch_time = AverageMeter() batch_time = AverageMeter()
losses = AverageMeter() losses = AverageMeter()
top1 = AverageMeter() top1 = AverageMeter()
top5 = AverageMeter() top5 = AverageMeter()
print('Start calibration of quantization observers before post-quantization')
model.eval()
model.fuse_model()
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
print(model.qconfig)
torch.quantization.prepare(model, inplace=True)
print('Start calibration of quantization observers before post-quantization')
model_to_quantize = copy.deepcopy(model)
model_to_quantize.eval()
#post training static quantization
if args.quant_option == 'static':
qconfig_dict = {"": torch.quantization.default_static_qconfig}
model_to_quantize = copy.deepcopy(model_fp)
qconfig_dict = {"": torch.quantization.get_default_qconfig('qnnpack')}
model_to_quantize.eval()
# prepare
model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_dict)
# calibrate
with torch.no_grad(): with torch.no_grad():
# warmup, reduce variability of first batch time, especially for comparing torchscript vs non # warmup, reduce variability of first batch time, especially for comparing torchscript vs non
input = torch.randn((args.batch_size,) + data_config['input_size']) input = torch.randn((args.batch_size,) + tuple(data_config['input_size']))
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
model(input) model(input)
end = time.time() end = time.time()
for batch_idx, (input, target) in enumerate(calib_loader): for batch_idx, (input, target) in enumerate(loader):
if batch_idx > args.calib_iter:
break if args.channels_last:
if args.no_prefetcher: input = input.contiguous(memory_format=torch.channels_last)
if args.fp16:
input = input.half()
# compute output
output = model(input)
if valid_labels is not None: if valid_labels is not None:
output = output[:, valid_labels] output = output[:, valid_labels]
loss = criterion(output, target) loss = criterion(output, target)
@ -214,7 +276,7 @@ def validate(args):
real_labels.add_result(output) real_labels.add_result(output)
# measure accuracy and record loss # measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5)) acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5))
losses.update(loss.item(), input.size(0)) losses.update(loss.item(), input.size(0))
top1.update(acc1.item(), input.size(0)) top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0)) top5.update(acc5.item(), input.size(0))
@ -230,44 +292,48 @@ def validate(args):
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' 'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) '
'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( 'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(
batch_idx, args.calib_iter, batch_time=batch_time, batch_idx, len(loader), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg, rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5)) loss=losses, top1=top1, top5=top5))
# quantize
if real_labels is not None: model_quantized = quantize_fx.convert_fx(model_prepared)
# real labels mode replaces topk values at the end #post training dynamic/weight only quantization
top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5) elif args.quant_option == 'dynamic':
qconfig_dict = {"": torch.quantization.default_dynamic_qconfig}
# prepare
model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_dict)
# no calibration needed when we only have dynamici/weight_only quantization
# quantize
model_quantized = quantize_fx.convert_fx(model_prepared)
else: else:
top1a, top5a = top1.avg, top5.avg _logger.warning("Invalid quantization option. Set option to default(static)")
results = OrderedDict( #
top1=round(top1a, 4), top1_err=round(100 - top1a, 4), # fusion
top5=round(top5a, 4), top5_err=round(100 - top5a, 4), #
param_count=round(param_count / 1e6, 2), model_to_quantize = copy.deepcopy(model_fp)
img_size=data_config['input_size'][-1], model_fused = quantize_fx.fuse_fx(model_to_quantize)
cropt_pct=crop_pct,
interpolation=data_config['interpolation'])
_logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( model = model_fused
results['top1'], results['top1_err'], results['top5'], results['top5_err']))
print('Start validation of post-quantized model')
torch.quantization.convert(model.eval(),inplace = True)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad(): with torch.no_grad():
# warmup, reduce variability of first batch time, especially for comparing torchscript vs non # warmup, reduce variability of first batch time, especially for comparing torchscript vs non
input = torch.randn((args.batch_size,) + data_config['input_size']) # input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).cuda()
input = torch.randn((args.batch_size,) + tuple(data_config['input_size']))
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
model(input) model(input)
end = time.time() end = time.time()
for batch_idx, (input, target) in enumerate(loader): for batch_idx, (input, target) in enumerate(loader):
if args.no_prefetcher: # if args.no_prefetcher:
if args.fp16: # target = target.cuda()
input = input.half() # input = input.cuda()
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
# compute output # compute output
output = model(input) # with amp_autocast():
# output = model(input)
if valid_labels is not None: if valid_labels is not None:
output = output[:, valid_labels] output = output[:, valid_labels]
loss = criterion(output, target) loss = criterion(output, target)
@ -276,7 +342,7 @@ def validate(args):
real_labels.add_result(output) real_labels.add_result(output)
# measure accuracy and record loss # measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5)) acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5))
losses.update(loss.item(), input.size(0)) losses.update(loss.item(), input.size(0))
top1.update(acc1.item(), input.size(0)) top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0)) top5.update(acc5.item(), input.size(0))
@ -311,6 +377,7 @@ def validate(args):
_logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( _logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format(
results['top1'], results['top1_err'], results['top5'], results['top5_err'])) results['top1'], results['top1_err'], results['top5'], results['top5_err']))
return results return results
@ -329,7 +396,7 @@ def main():
if args.model == 'all': if args.model == 'all':
# validate all models in a list of names with pretrained checkpoints # validate all models in a list of names with pretrained checkpoints
args.pretrained = True args.pretrained = True
model_names = list_models(pretrained=True) model_names = list_models(pretrained=True, exclude_filters=['*in21k'])
model_cfgs = [(n, '') for n in model_names] model_cfgs = [(n, '') for n in model_names]
elif not is_model(args.model): elif not is_model(args.model):
# model name doesn't exist, try as wildcard filter # model name doesn't exist, try as wildcard filter
@ -349,7 +416,8 @@ def main():
result = OrderedDict(model=args.model) result = OrderedDict(model=args.model)
r = {} r = {}
while not r and batch_size >= args.num_gpu: while not r and batch_size >= args.num_gpu:
torch.cuda.empty_cache() # torch.cuda.empty_cache()
torch.empty_cache()
try: try:
args.batch_size = batch_size args.batch_size = batch_size
print('Validating with batch size: %d' % args.batch_size) print('Validating with batch size: %d' % args.batch_size)
Loading…
Cancel
Save