|
|
@ -18,7 +18,7 @@ import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .layers import SelectAdaptivePool2d
|
|
|
|
from .layers import SelectAdaptivePool2d
|
|
|
|
from .registry import register_model
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
|
|
|
@ -229,8 +229,8 @@ class SEResNetBlock(nn.Module):
|
|
|
|
class SENet(nn.Module):
|
|
|
|
class SENet(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, block, layers, groups, reduction, drop_rate=0.2,
|
|
|
|
def __init__(self, block, layers, groups, reduction, drop_rate=0.2,
|
|
|
|
in_chans=3, inplanes=128, input_3x3=True, downsample_kernel_size=3,
|
|
|
|
in_chans=3, inplanes=64, input_3x3=False, downsample_kernel_size=1,
|
|
|
|
downsample_padding=1, num_classes=1000, global_pool='avg'):
|
|
|
|
downsample_padding=0, num_classes=1000, global_pool='avg'):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
----------
|
|
|
@ -297,10 +297,10 @@ class SENet(nn.Module):
|
|
|
|
('bn1', nn.BatchNorm2d(inplanes)),
|
|
|
|
('bn1', nn.BatchNorm2d(inplanes)),
|
|
|
|
('relu1', nn.ReLU(inplace=True)),
|
|
|
|
('relu1', nn.ReLU(inplace=True)),
|
|
|
|
]
|
|
|
|
]
|
|
|
|
# To preserve compatibility with Caffe weights `ceil_mode=True`
|
|
|
|
|
|
|
|
# is used instead of `padding=1`.
|
|
|
|
|
|
|
|
layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True)))
|
|
|
|
|
|
|
|
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
|
|
|
|
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
|
|
|
|
|
|
|
|
# To preserve compatibility with Caffe weights `ceil_mode=True` is used instead of `padding=1`.
|
|
|
|
|
|
|
|
self.pool0 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
|
|
|
|
|
|
|
|
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='layer0')]
|
|
|
|
self.layer1 = self._make_layer(
|
|
|
|
self.layer1 = self._make_layer(
|
|
|
|
block,
|
|
|
|
block,
|
|
|
|
planes=64,
|
|
|
|
planes=64,
|
|
|
@ -310,6 +310,7 @@ class SENet(nn.Module):
|
|
|
|
downsample_kernel_size=1,
|
|
|
|
downsample_kernel_size=1,
|
|
|
|
downsample_padding=0
|
|
|
|
downsample_padding=0
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.feature_info += [dict(num_chs=64 * block.expansion, reduction=4, module='layer1')]
|
|
|
|
self.layer2 = self._make_layer(
|
|
|
|
self.layer2 = self._make_layer(
|
|
|
|
block,
|
|
|
|
block,
|
|
|
|
planes=128,
|
|
|
|
planes=128,
|
|
|
@ -320,6 +321,7 @@ class SENet(nn.Module):
|
|
|
|
downsample_kernel_size=downsample_kernel_size,
|
|
|
|
downsample_kernel_size=downsample_kernel_size,
|
|
|
|
downsample_padding=downsample_padding
|
|
|
|
downsample_padding=downsample_padding
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.feature_info += [dict(num_chs=128 * block.expansion, reduction=8, module='layer2')]
|
|
|
|
self.layer3 = self._make_layer(
|
|
|
|
self.layer3 = self._make_layer(
|
|
|
|
block,
|
|
|
|
block,
|
|
|
|
planes=256,
|
|
|
|
planes=256,
|
|
|
@ -330,6 +332,7 @@ class SENet(nn.Module):
|
|
|
|
downsample_kernel_size=downsample_kernel_size,
|
|
|
|
downsample_kernel_size=downsample_kernel_size,
|
|
|
|
downsample_padding=downsample_padding
|
|
|
|
downsample_padding=downsample_padding
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.feature_info += [dict(num_chs=256 * block.expansion, reduction=16, module='layer3')]
|
|
|
|
self.layer4 = self._make_layer(
|
|
|
|
self.layer4 = self._make_layer(
|
|
|
|
block,
|
|
|
|
block,
|
|
|
|
planes=512,
|
|
|
|
planes=512,
|
|
|
@ -340,8 +343,9 @@ class SENet(nn.Module):
|
|
|
|
downsample_kernel_size=downsample_kernel_size,
|
|
|
|
downsample_kernel_size=downsample_kernel_size,
|
|
|
|
downsample_padding=downsample_padding
|
|
|
|
downsample_padding=downsample_padding
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.avg_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.feature_info += [dict(num_chs=512 * block.expansion, reduction=32, module='layer4')]
|
|
|
|
self.num_features = 512 * block.expansion
|
|
|
|
self.num_features = 512 * block.expansion
|
|
|
|
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.last_linear = nn.Linear(self.num_features, num_classes)
|
|
|
|
self.last_linear = nn.Linear(self.num_features, num_classes)
|
|
|
|
|
|
|
|
|
|
|
|
for m in self.modules():
|
|
|
|
for m in self.modules():
|
|
|
@ -352,14 +356,13 @@ class SENet(nn.Module):
|
|
|
|
downsample = None
|
|
|
|
downsample = None
|
|
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
|
|
downsample = nn.Sequential(
|
|
|
|
downsample = nn.Sequential(
|
|
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
|
|
nn.Conv2d(
|
|
|
|
kernel_size=downsample_kernel_size, stride=stride,
|
|
|
|
self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size,
|
|
|
|
padding=downsample_padding, bias=False),
|
|
|
|
stride=stride, padding=downsample_padding, bias=False),
|
|
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
layers = [block(
|
|
|
|
layers = [block(self.inplanes, planes, groups, reduction, stride, downsample)]
|
|
|
|
self.inplanes, planes, groups, reduction, stride, downsample)]
|
|
|
|
|
|
|
|
self.inplanes = planes * block.expansion
|
|
|
|
self.inplanes = planes * block.expansion
|
|
|
|
for i in range(1, blocks):
|
|
|
|
for i in range(1, blocks):
|
|
|
|
layers.append(block(self.inplanes, planes, groups, reduction))
|
|
|
|
layers.append(block(self.inplanes, planes, groups, reduction))
|
|
|
@ -371,15 +374,16 @@ class SENet(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.avg_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
if num_classes:
|
|
|
|
if num_classes:
|
|
|
|
num_features = self.num_features * self.avg_pool.feat_mult()
|
|
|
|
num_features = self.num_features * self.global_pool.feat_mult()
|
|
|
|
self.last_linear = nn.Linear(num_features, num_classes)
|
|
|
|
self.last_linear = nn.Linear(num_features, num_classes)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.last_linear = nn.Identity()
|
|
|
|
self.last_linear = nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.layer0(x)
|
|
|
|
x = self.layer0(x)
|
|
|
|
|
|
|
|
x = self.pool0(x)
|
|
|
|
x = self.layer1(x)
|
|
|
|
x = self.layer1(x)
|
|
|
|
x = self.layer2(x)
|
|
|
|
x = self.layer2(x)
|
|
|
|
x = self.layer3(x)
|
|
|
|
x = self.layer3(x)
|
|
|
@ -387,7 +391,7 @@ class SENet(nn.Module):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def logits(self, x):
|
|
|
|
def logits(self, x):
|
|
|
|
x = self.avg_pool(x).flatten(1)
|
|
|
|
x = self.global_pool(x).flatten(1)
|
|
|
|
if self.drop_rate > 0.:
|
|
|
|
if self.drop_rate > 0.:
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
x = self.last_linear(x)
|
|
|
|
x = self.last_linear(x)
|
|
|
@ -399,116 +403,70 @@ class SENet(nn.Module):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_senet(variant, pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return build_model_with_cfg(
|
|
|
|
|
|
|
|
SENet, variant, default_cfg=default_cfgs[variant], pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnet18(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnet18']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNetBlock, [2, 2, 2, 2], groups=1, reduction=16,
|
|
|
|
block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnet18', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnet34(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnet34']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNetBlock, [3, 4, 6, 3], groups=1, reduction=16,
|
|
|
|
block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnet34', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnet50']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
|
|
|
|
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnet50', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnet101']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16,
|
|
|
|
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnet101', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnet152(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnet152']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16,
|
|
|
|
block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnet152', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_senet154(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['senet154']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
|
|
|
|
block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16,
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
return _create_senet('senet154', pretrained, **model_args)
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnext26_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnext26_32x4d(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnext26_32x4d']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNeXtBottleneck, [2, 2, 2, 2], groups=32, reduction=16,
|
|
|
|
block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnext26_32x4d', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnext50_32x4d(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnext50_32x4d']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
|
|
|
|
block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnext50_32x4d', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def legacy_seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
def legacy_seresnext101_32x4d(pretrained=False, **kwargs):
|
|
|
|
default_cfg = default_cfgs['seresnext101_32x4d']
|
|
|
|
model_args = dict(
|
|
|
|
model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16,
|
|
|
|
block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, **kwargs)
|
|
|
|
inplanes=64, input_3x3=False,
|
|
|
|
return _create_senet('seresnext101_32x4d', pretrained, **model_args)
|
|
|
|
downsample_kernel_size=1, downsample_padding=0,
|
|
|
|
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|